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Preface

Discovery of a new chemical entity that exerts pharmacological effects for
curing or treating diseases or relieving symptoms is only the first step in
the drug developmental process. In the developmental cycle of a new
drug, the delivery of a desired amount of a therapeutic agent to the target
at a specific time or duration is as important as its discovery. In order
to realize the optimal therapeutic outcomes, a delivery system should
be designed to achieve the optimal drug concentration at a predeter-
mined rate and at the desired location. Currently, many drug delivery
systems are available for delivering drugs with either time or spatial
controls, and numerous others are under investigation. Many books and
reviews on drug delivery systems based on drug release mechanism(s)
have been published. As the technology evolves, it is crucial to intro-
duce these new drug delivery concepts in a logical way with successful
examples, so that the pharmaceutical scientists and engineers work-
ing in the fields of drug discovery, development, and bioengineering can
grasp and apply them easily.

In this book, drug delivery systems are presented with emphases on
the design principles and their physiological/pathological basis. The
content in each chapter is organized with the following sections:

® Introduction
® Rationale for the system design

® Mechanism or kinetics of controlled release

m Key parameters that can be used to modulate the drug delivery rate
or spatial targeting

s Current status of the system/technology
® Future potential of the delivery system
Prior to discussing individual drug delivery system/technology based

on the design principles, the basic concepts of pharmacokinetics and bio-
logical barriers to drug delivery are outlined in the first two chapters.

xi



xii Preface

For each specific design principle, the contributors also briefly introduce
the relevant pharmacokinetics (where necessary) and include the chal-
lenges of different biological barriers that need to be overcome.

It is our belief that this book provides distinctive knowledge to phar-
maceutical scientists, bioengineers, and graduate students in the related
fields and can serve as a comprehensive guide and reference to their
research and study.

We would like to thank all the authors for their contributions to this
book project. Especially, we would like to thank Mr. Kenneth McCombs
at McGraw-Hill for his patience, understanding, and support in editing
this book.

XI1AOLING Li1, PH.D.

BHASKARA R. JasTi, PH.D.

Department of Pharmaceutics and Medicinal Chemistry
Thomas J. Long School of Pharmacy and Health Sciences
University of the Pacific

Stockton, California
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1.1 Introduction

In biopharmaceutics, more specifically drug delivery, pharmaceutical sci-
entists generally are faced with an engineering problem: develop drug
delivery systems that hit a desired target. The target in pharmacoki-
netics is generally a plasma/blood drug concentration that lies between
the minimum effect concentration (MEC) and minimum toxic concen-
tration MTC) (Fig. 1.1).

In 1937, Teorell’s two articles,la’lb “Kinetics of Distribution of
Substances Administered to the Body,” spawned the birth of pharma-
cokinetics. Thus his work launched an entire area of science that deals

30 A
MTC
£ 20
E
s /\N MEC
S /
10 1 ——=- Infusion
" —— Extravascular input
II (first-order)
0 u T T T

0 20 40 60 80 100 120 140
Time

Figure 1.1 Therapeutic window.
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with the quantitative aspects that undergird the kinetic foundation of
controlled release delivery systems: designing a delivery device or
system that achieves a desired drug plasma concentration C, or a desired
concentration profile. To be effective clinically but not toxic, the desired
steady-state C, must be greater than the MEC and less than the MTC.
This desired or target steady-state C, may be achieved by using a vari-
ety of dosage forms and delivery/dosage strategies.

1.2 Pharmacokinetics and
Pharmacodynamics

Pharmacokinetics and pharmacodynamics provide the time-course
dynamics between drug concentration and desired target effect/outcome
necessary in the development of optimal drug delivery strategies. The basic
premise is that if one is able to model the dynamics governing the trans-
lation of drug input into drug concentration in the plasma C, or drug
effect accurately, one potentially can design input drug delivery devices
or strategies that maximize the effectiveness of drug therapy while
simultaneously minimizing adverse effects. Figure 1.2 shows the rela-
tionship between the three main processes that convert the dose into an
effect. The pharmacokinetic model translates the dose into a plasma con-
centration C,; the link model maps C, into the drug concentration at the
effect site C,; finally, the pharmacodynamic model converts C, into the
measured effect. For most drugs, C, is in one-to-one correspondence
with the corresponding effect; therefore, most delivery devices can
focus primarily on achieving a desired steady-state drug plasma
concentration C, . Therefore, in this chapter the focus will be on the
use of pharmacokinetics to guide the design of controlled release deliv-
ery systems that achieve their intended concentration. Some issues
arising owing to C, versus effect nonstationarity (either time- or state-
varying pharmacokinetics or pharmacodynamics) will be discussed in
the section entitled, “Limitations of Using Pharmacokinetics Only to
Design Controlled Release Delivery Systems.”

Pharmacokinetic Likkeraodel Pharmacodynamic
model (C,>C,) > model
(dose>Cp) pr=a (Cg> effect)

Figure 1.2 Relationship between the pharmacokinetic, link, and phar-
macodynamic models.
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1.3 LADME Scheme and Meaning
of Pharmacokinetic Parameters

The frequently used acronym LADME, which stands for liberation,
absorption, distribution, metabolism, and excretion, broadly describes
the various biopharmaceutical processes influencing the pharmacoki-
netics of a drug. Since each of aspect of LADME can influence the phar-
macokinetics of a drug and ultimately the design of controlled release
delivery devices, this section will review and explain the relationship
between LADME processes and eight common pharmacokinetic param-
eters (F, K, Vd? t1/2’ Cl, ka’ tmax, Cp,max)'

Each of the LADME processes can have an impact on a drug’s pharma-
cokinetics profile, some more than others depending on the physicochem-
ical properties of the drug, dosage formulation, route of admini-
stration, rates of distribution, patient’s specific anatomy/physiology,
biotransformation/metabolism, and excretion. From a pharmacoki-
netics perspective, liberation encompasses all kinetic aspects related
to the liberation of drug from its dosage form into its active or desired
form. For example, free drug released from a tablet or polymeric matrix
in the gut would be liberation. Although liberation is first in the
LADME scheme, it does not need to occur first. For example, ester pro-
drug formulations can be designed to improve gut absorption by increas-
ing lipophilicity. These ester formulations deliver the prodrug into the
systemic circulation, where blood esterases or even chemical decom-
position cleaves the ester into two fragments, a carboxcylic acid and an
alcohol; the desired free drug can be liberated as either the carboxcylic
acid or the alcohol depending on the chemical design. Liberation kinet-
ics can be altered by other physicochemical properties, such as drug sol-
ubility, melting point of vehicle (suppository), drug dissolution,
gastrointestinal pH, etc. Overall liberation kinetics are fairly well
known because they generally can be estimated from in vitro experi-
ments. The foundational principles governing the liberation of drug
from delivery systems were laid by many, who rigorously applied the
laws and principles of physics and physical chemistry to drug delivery
systems.z_12

1.3.1 Maximum concentration, time to
maximum concentration, and first-order
absorption rate constant C, ;.x; tmax» Ka

Although liberation and absorption can overlap, absorption is much more
difficult to model accurately and precisely in pharmacokinetics. A great deal
of work in this area by Wagner-Nelson'** and Loo-Riegelman'®"” reflects
the complexities of using pharmacokinetics and diffusion models to describe
the rate of drug absorption. Since most drugs are delivered via the oral
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route, the gastrointestinal (GI) tract is described briefly. In the GI tract, the
source of these complexities lies in the changing environmental conditions
surrounding the drug and delivery modality as it moves along the GI tract.
Most drugs experience a mix of zero- and first-order kinetic absorption; this
mixing of zero- and first-order input results in nonlinearities between dose
and C, (see “Linear versus Nonlinear Pharmacokinetics”). A widely used
simplification assumes that extravascular absorption (including the gut)
1s a first-order process with a rate constant kyor k., or kg practically, Cp max
and ¢,,,, are also used to characterize the kinetics of absorption. C, ., (i.e.,
the maximal C,) can be determined directly from a plot of C, versus time;
it is the maximum concentration achieved during the absorption phase. ¢,
is amount of time it takes for Cp max to be reached for a given dose [see
Fig. 1.14; the equations for Cpmax and ¢, are given in Eqs. (1.28) and (1.29)].

1.3.2 Bioavailability F

While pharmacokinetics describing the rate of absorption are quite com-
plex owing to simultaneous kinetic mixing of passive diffusion and mul-
tiple active transporters (e.g., P-glycoprotein,'® amino acid'®) and
enzymes (cytochrome P450s20—23) pharmacokinetics describing the extent
of absorption are well characterized and generally accepted, with area
under the C, curve (AUC) (Eq. 1.1) being the most widely used phar-
macokinetics parameter to define extent of absorption. AUC is closely
and sometimes incorrectly associated with bioavailability. AUC is a
measure of extent of absorption, not rate of absorption; true bioavail-
ability is made up of both extent and rate of absorption. The rate of
absorption tends to be more important in acute-use medications (e.g.,
pain management), and the extent of absorption is a more important
factor in chronic-use medications.?* Frequently, the unitless ratio phar-
macokinetics parameter F will be used to represent absolute bioavail-
ability under steady-state conditions or for medications of chronic use.

AUC= j C,(t)dt (1.1)

Fe AUC, , /dose,,
AUC,, /dose, ,

(1.2)

In Eq. (1.2), the e.v. and i.v. subscripts stand for extravascular and intra-
venous, respectively. F'is a unitless ratio, 0 < F < 1, that compares the
drug’s availability given in a nonintravenous route compared with the
availability obtained when the drug is given by the intravenous route.
Fis also known as the fraction of dose that reaches the systemic circu-
lation (i.e., posthepatic circulation).



