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FOREWORD

The theory of quasiconformal mappings is about half a century
old. Its originators, Ahlfors, Grétzsch and Lavrent’yev approached
quasiconformal mappings from three different points of view.
Ahlfors, in working out the geometric meaning of the Nevanlinna
theory (concerned with the value distribution of entire and
meromorphic functions), made the important observation that his
geometric version of the Nevanlinna theory does not require that
the functions concerned be (locally) conformal mappings, but
merely that they be (uniformly) quasiconformal. Lavrent’yev was
looking for a geometric interpretation of the nonlinear partial
differential equations of a two-dimensional steady potential flow
of gas which would generalize the simple geometric meaning
(namely, conformality) of the linear Cauchy-Riemann equations
describing the two-dimensional potential flow of an incompressible
fluid. Grétzsch, finally, posed and solved several extremal prob-
lems for nonconformal mappings. His great merit was to recognize
that the “correct” way of measuring the deviation of a mapping
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from conformality is by the supremum of the local deviation
rather than by some weighted average. This way is “correct” in
the sense that it leads to beautiful and striking results.

The celebrated theorem by Teichmiiller, obtained about ten
years after Grotzsch’s results should be considered as a far
reaching deepening and extension of Grotzsch’s beautiful but
simple papers. The significance, and the very validity, of Teich-
miiller’s theorem, was not recognized at once. This was due partly
to the novelty of Teichmiiller’s ideas, partly to the unusual way
in which they were presented, and perhaps also due to some
other specific reasons. However, Ahlfors’ 1950 paper in the
Jerusalem Journal d’Analyse began a period of intensive assimila-
tion and reworking of Teichmiiller’s approach. Only after this was
accomplished did the theory of quasiconformal mappings enter the
mainstream of mathematics.

Today, the theory of quasiconformal mappings in two dimen-
sions is closely connected with the theory of moduli of Riemann
surfaces, a connection originally established by Teichmiiller, with
uniformization theory and with the theory of Kleinian groups.
Indeed, the methods suggested by quasiconformal mappings re-
vived their venerable subjects and led to new interesting questions
and results. Very recently new connections were established with
topology in two and three dimensions, primarily through the
spectacular discoveries by Thurston. On the other hand, the theory
of quasiconformal self-mappings of the upper half-plane and of the
so-called universal Teichmiiller spaces and Kleinian groups are
being actively studied by many investigators, and seem to attract
the attention of mathematicians working in fields other than
classical function theory. There are, however, few general exposi-
tions, and the English translation of S. L. Krushkal’s book is a
welcome addition to the literature. The book begins at the
beginning, so that it may serve as an introduction to the subject.
The bibliography is rather complete and will enable the reader to
pursue further any subject mentioned. The western reader will be
particularly grateful for the detailed report on the important work
by the author himself and by other Soviet mathematicians on the
variational problem by which Teichmiiller initiated the modern
theory and on various generalizations of this problem.

Lipman Bers
Columbia University



PREFACE

Recent decades have seen an intensive development of areas in
the theory of functions of a complex variable that touch on both
the theory of quasiconformal mappings and the theory of Rie-
mann surfaces. The application of quasiconformal mappings has
not only provided a new tool for the investigation of problems in
the theory of Riemann surfaces (and, in particular, classical
problems that have not been solved) but has also shed light on the
basic nature of the most important concepts of that theory. On
the other hand, many problems in the theory of quasiconformal
mappings receive a natural completion when we examine them on
Riemann surfaces and not merely on plane regions.

The present monograph is devoted to a study of these ques-
tions. It deals primarily with the study of extremal problems for
quasiconformal (and conformal) mappings and the development of
variational methods for solving them, with the theory of spaces of
Riemann surfaces and some generalizations of them that are
connected with uniformization and the classical problem of moduli
of Riemann surfaces, and with the solution of certain problems in
the theory of (discontinuous) Kleinian groups of transformations.

xi
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Here, the methods of the theory of functions are interwoven with
the ideas of functional analysis, topology, partial differential
equations, algebraic geometry, and other branches of mathematics.

A distinctive feature of the exposition made in the book is the
systematic application of the variational method. In the theory of
quasiconformal mappings and its applications, different in-
vestigators (M. A. Lavrent’yev, L. V. Ahlfors, P. P. Belinskiy, and
others) have used different variational methods, though these are
akin to each other in a certain sense. The approach that we shall
take rests largely on the methods of functional analysis.

In Chapter I, which is of an auxiliary nature, we shall give some
general information regarding quasiconformal mappings, Riemann
surfaces, and discontinuous transformation groups. The basic re-
sults are treated in the remaining six chapters. The reader who is
primarily interested in the theory of conformal mappings can read
Chapter IV independently of the others (once he has passed §2 of
Chapter I).

I am deeply grateful to P. P. Belinskiy, with whom I have more
than once discussed the questions examined here. B. N. Apanasov
and V. V. Chuyeshev were very helpful in the preparation of the
manuscript for printing. I am indebted to P. A. Biluta, L. I.
Volkovskiy, and I. A. Volynets, who carefully read the manu-
script, for a number of valuable comments. | express my gratitude
to all.

Samuil L. Krushkal’
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GENERAL INFORMATION

§1. Certain spaces of functions.
Integral operators

1. Consider the following complex Banach spaces: L, (£), where
p>> 1, the space of functions f(z) that are measurable on a set £ in
the plane of the complex variable z = x + jy with norm defined
by

1)

Wl =111 22 = (111 e dedy )™

L, (E), the space of functions f(z) that are measurable on E with
norm defined by

flle = 1 ll Lo = sp If (z)l; 2

C(F), the space of continuous functions f(z) defined on a closed
set F with norm defined by
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Wl gy = max |f (z)}; 3)

Co(F), the space of functions f(z) that are defined on a closed set
F and that satisfy a Holder condition with exponent e in (0, 1]
with norm

Hleqe = fllcry + He,r (), @)
where
H, r(f) = sup If (21) — f ()| . 5)
' 21,2,&F |25 — zg]® ?

Cy (D), where CJ = C,, the space of functions f(z) that have

continuous derivatives of the first m orders in a closed region D
such that

am =
ar—mlefy—IECw(D) (l:O,i, ...,m), O<a<1, m>0,

where the derivatives at a boundary point z are defined as the

limits of the corresponding derivatives as z — z, through values
inside D and the norm is defined as
a‘mf
’m*layl )

c(D) 2
(6)

UI

klaJ

gz = i |

B, r (where p > 2), the space of functions f(z), with f(0)=

that are defined on the disk Ug: |zl << R (where 0< R< o)
with norm

oo =H, 2 5 O+ Wl + Il )
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where, as usual,

o _A(o ;0N o _4(0 .8
9z~ 2 \ oz ay |’ &z 2 \oz ay |”  (8)

Here and in the rest of the book, the derivatives are understood to
be generalized derivatives in the sense of Sobolev, that is, in the
sense of the theory of generalized functions.

We shall denote the disk |z] << R by Ug. For R=1, we shall
denote the unit disk |z| <C 1 simply by U instead of U,. We note
also that in formula (7) we can take R=co, assuming that (5),
(7), and (8) are considered only for finite z.

By virtue of the familiar embedding theorems of Sobolev
[164], we have

H_ 3 5 OSHM P B)(Ifille + |fllp), O<R<co. ()

Here, the constant M (p, R) depends only on p and R. It follows
from (3), (5), and (7) that

Ml < Ro=2/2|flls, n, 0<R<w.  (10)

2. Let C denote the complex plane. In the space L,(C), where
p > 2, let us look at the integral operators

To@ =~ [[e@(rZ—)aan, (D
Mo () = — 3 || =5 dgdn, =g+ in. (12

The integral (11) converges absolutely. By virtue of the results of
Calderon and Zygmund [79], the integral (12) exists for almost all

z & G as a Cauchy principal value. If p(z) has a compact support,
then
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1 p (L) d&dn 12’
Hp_—__TS‘dS‘ —-—'(g_z)z. ( )

Theorem 1. If p& Ly(C) for all p > 2, then
(Top)z = p, (Top), = Ilp, (13)

T & B, ., and

IZoplle, . < My (D) lloll,» (14)

where the constant M,(p) depends only on p and Tlp is a
(bounded) linear operator from L,(C) into L,(C) such that

”Hp”p < Agllellys (15)

where Ay =\\Iil|L (the norm of the operator IT in L,(C))
depends continuously on p and A,=1.

It follows that, for arbitrary % in (0, 1), there exists a
8=28(k) > 0 such that

kAp <1 for 2<p<<2+ 8= p, (k). (16)

If p(z) belongs to C" and has a compact support, (13) will
have derivatives in the usual sense, T,p will belong to c> 1 and
ITp will belong to CZ".

In what follows, we shall also apply the operator

1 dtd
PN |- o

to functions of compact support P& Ly(C), where p>2. Ob-
viously, Top(z)=Tp(z)— Tp(0). For the operator Tp, we have
relationships analogous to (13) and (14) (except that, in general,
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Tp(0) == 0). If p& L (C), we have

|To(z,) — To(z)| < M o] o |21 — 22| |10 |z — 22 l(',g)
1

where z, and z, are complex numbers and A, is a positive
constant.

Proofs of these assertions can be found, for example, in the
books by Vekua [43], Lehto and Virtanen [126], and Ahlfors
[9] (see also [79]). That A, depends continuously on p follows
from Riesz’s theorem [160] on the logarithmic convexity of AJ
as a function of p.

We note also that for functions f(z) that are continuous in a
closed region D  C of finite connectivity with rectifiable
boundary 9D and that have generalized derivatives f; belonging
to Ly(D), where p > 2, Green’s formula

|| L dedy = Yf() (19)

JoJ

D

and the Borel-Pompeiu formula

1 S f(C.) dC 55' of dgflﬂ _ {f(z), z & D,_ (20)
0, z& C\D

remain valid. These formulas are easily obtained, for example, by
smoothing f(z) and applying the corresponding formulas for
smooth functions.

It follows from (20) that, if the generalized derivative f;
vanishes in the region D, then [(z) is holomorphic in D.

82. Quasiconformal mappings of plane regions

1. Suppose that a function w=F(z)=u(z, y)+-iv(z, y) maps
a region J) contained in the extended complex plane E:CU [o0)
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homeomorphically onto a region A and that it has locally square-
integrable generalized derivatives f, and f; in D. It then follows
in particular that f(z) is differentiable almost everywhere in D
(see, for example, [139, 158]). For definiteness, we shall treat
only orientation-preserving mappings.

Following Lavrent’yev [115, 117], we shall refer to the real
numbers p=p(z,) =1 and 0=0(z,) as the characteristics of the
mapping w=f(z) at the point z, & D if an infinitesimally small
ellipse £, with center at the point z,, with semiaxis ratio a/b=p
(where @ > b), and with the major semiaxis inclined at an angle
0 to the z-axis, is transformed in such a way that

max 17 (2) — f (20)] i
I o —7ar L (a1
z=E,

(If a=b, 0 is undefined.) Suppose that a measurable function
p(2) =1 is defined on a region D and that a measurable function
0(z) is defined on that part of D on which p(z) > 1. Suppose
that (21) holds for these functions almost everywhere in D and
that p(z) & L « (D). Then, we shall call the homeomorphism f

a quasiconformal mapping with characteristics p(z) and 6(z).
At points of differentiability of f, the characteristics are
connected with the derivatives f, and f; by

_r(e—1 2i0(2) — 17 (2
P@FLS TG

Therefore, we can give the following definition of quasi-
conformality, which is equivalent to the preceding one. We define
a quasiconformal mapping of the region [ as any homeomorphic
generalized solution w= f(z) of Beltrami’s equation

w: —u(z)w, =0, (22)

where u(z) is a measurable function in D that satisfies the
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condition |||l <C 1, that is, a solution such that the derivatives
f, and f3 are locally square-integrable generalized derivatives and
f(2) satisfies equation (22) almost everywhere in D. This approach
to a quasiconformal mapping is due to Vekua [43, 44] (see also
Morrey [144]).

The mapping f is conformal in the Riemannian metric

ds?=M\(2) |dz-+p(2)dzl?, Mz) >0 (23)

and it preserves angles almost everywhere if these are measured in
the region D in terms of the metric (23) but in the region
A=f(D) in terms of the usual Euclidean metric ds} = du? + dv®.

In particular, if w(z)=0 almost everywhere in the region D,
then f(z) is a holomorphic function in D.

Henceforth, when we speak of solutions of equation (22), we
shall always mean generalized solutions.

The function

b () = @4)

z

is called the complex dilatation or Beltrami coefficient of the
mapping f, and the ratio

il
KO = Tl )

is called the dilatation of the mapping f. From (24) and (25), we
have

TAERIA
K= FI=m

A mapping f such that K(f)=K is said to be K-quasi-
conformal. K-quasiconformality is equivalent to satisfaction of the
inequality



8 GENERAL INFORMATION

VPP < (K+ ) (=) @9

If the homeomorphism f is not quasiconformal, then K(f)= oo.

A very simple example of a quasiconformal mapping is the
affine mapping w=az—l—b2—]—c, where a, b, and ¢ are constants.
Its complex characteristic is

w |

b
= —_— = Const,
a

EIS

z

and it maps every circle into an ellipse.

Let w=f(z) denote any quasiconformal mapping. In a neigh-
borhood of a point z, at which this mapping is differentiable, we
have

W—w, =

T (z—z) + LEV G —2) 4 02—z, wp = Fzo),
so that, at points where it is differentiable, every quasiconformal
mapping behaves in the small like an affine mapping.

2. Let us formulate the general properties of Juasiconformal
mappings that we shall need later. Proofs of the assertions that we
shall make can be found, for example, in the books by Ahlfors
[9], Belinskiy [25], Vekua [43], and Lehto and Virtanen
[126].

Theorem 2. For an arbitrary measurable complex dilatation

BG)=—LZE— 00, <1, @)

defined in a simply-connected region D contained in C, there
exists a homeomorphism w=f(z) of the region D onto a given
simply-connected region A (of the same conformal type as D) that
satisfies Beltrami’s equation w;= u (z) w,.

Theorem 3. Let fo(z) denote a homeomorphic solution of



