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Preface

Chaos, up to a few years ago, was just an interesting field to researchers
who studied the behavior of nonlinear dynamical systems of certain mathe-
matical structure.

Chaotic systems are frequently viewed in phase space, which is a region
of space where the current state of the system perpetually exists. Regions
of space without the perpetual existence of chaotic dynamics are unin-
teresting because the points in these areas move off to infinity and do not
contribute to the continuation of the chaotic process. The chaotic equations
thus derived operate on coordinates in space and each iteration of the
equations signifies the passage of the next time increment. This type of
modeling (phase space coordinates) facilitates not only the presentation of
trajectories or orbits that the chaotic system follows in the temporal evo-
lution but also easily clarifies the concept of synchronization, which plays
a central role in the communication properties of chaos. By synchroniza-
tion of two chaotic systems, we define the situation by which a chaotic
system is driven (coupled) by a phase signal of another chaotic system
in such a way that these two systems eventually synchronize. In other
words, the other phase variables of the two systems converge to the same
value one to one. The concept of transmission of information from one
system to the other has thus been developed due to this convergence. For
example having constructed two chaotic systems that can be synchronized,
we somehow modulate on one phase signal of one system the informa-
tion signal to be transmitted, which drives the other system, and after
synchronization, we subtract (demodulate) the information from the corre-
sponding phase signal of the other coupled chaotic system. This technique
is demonstrated in this book in various applications of communication sys-
tems. A great deal of introductory details are given in Chapter One. Chapter
Two shows how chaotic signals are generated and transmitted. The design
of chaotic transmitters and receivers is shown in Chapter Three whereas
chaos-based modulation and demodulation techniques are presented in
Chapter Four. In Chapter Five a chaos-based spreading sequence is shown
to outperform classical pseudorandom sequences in two important cases
such as selective and nonselective channels. In Chapter Six, several channel



equalization techniques specifically designed for chaotic communications
systems are developed by using knowledge of the systems dynamics, linear
time-invariant representations of chaotic systems, and symbolic dynamics
representations of chaotic systems. Finally a specific application is pre-
sented in Chapter Seven for optical communications. The fundamental
concepts of chaos and its modeling are presented in Appendix A and
Appendix B.

It is believed and hoped that this book will provide the essential reading
material for those who want to have an integrated view of how an old
concept such as chaos can open new roads in the communications field.
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1.1 Chaos Modeling

In the beginning, according to ancient Greek theology and philosophy,
there was chaos.! The Greek philosophers believed that our ordered uni-
verse, the cosmos, was formed out of this chaos. Ancient Greeks did not
give a specific definition to chaos even though it was related to infinity,
disorder, and unpredictability. The long-term behavior of chaos, however,
was well understood because, as Heraclitus said, “Ta mavta pet,” which
means all things flow or all is flux, and the only interpretation of that is that
the cosmos was formed out of this chaos. In other words, ancient Greeks
believed what modern science discovered centuries later, that disorder can
result in order under certain conditions and thus the Greeks taught us of
the existence of attractors or limit cycles, as explained mathematically in
Appendix A. This type of evolution has been proved implicitly by science
because all natural processes have one direction of evolution, which is
the increase of entropy or reaching the state of minimum energy. If we
extrapolate this further, it is not impossible to believe that the present-day
universe is an attractor of the Big Bang. Because order cannot be gen-
erated from nothing, it is necessary to believe that chaos does not mean
absence of order but that there exists order in chaos. The order in chaos
is not obvious, nor are the initial conditions that are necessary to arrive

1
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at some kind of order. This subtle conclusion is what has triggered the
interest of scientists from ancient times to the present. This is exactly what
scientists are using, the evolution of chaos, to study many phenomena and
processes, including telecommunications, as we shall see in subsequent
chapters.

Chaos is an aperiodic long-term behavior in a deterministic system that
exhibits sensitive dependence on initial conditions.!

The three components of the definition are clarified as follows:

1. “Aperiodic long-term behavior” means that the system’s trajectory
in phase space does not settle down to any fixed points (steady
state), periodic orbits, or quasi-periodic solutions as time tends to
infinity. This part of the definition differentiates aperiodicity due to
chaotic dynamics from the transient aperiodicity of, for example, a
periodically oscillating system that has been momentarily perturbed.

2. “Deterministic” systems can have no stochastic (meaning probabilis-
tic) parameters. It is a common misconception that chaotic systems
are noisy systems driven by random processes. The irregular behav-
ior of chaotic systems arises from intrinsic nonlinearities rather than
noise.

3. “Sensitive dependence on initial conditions” requires that trajectories
originating from very nearly identical initial conditions will diverge
exponentially quickly. The meaning of this will be made clear in the
following discussion.

The mathematical model developed, now called the Lorenz system, has
been used as a paradigm for chaotic systems that satisfy the above defini-
tion. The Lorenz system consists of just three coupled first-order ordinary
differential equations:

x1 = o(x2 — x1)
.7‘6'2 = —X1X3 + 7 — X2 (1.1)
X3 = x1%2 — bxs

Lorenz chose parameter values o =10, b=8/3, and r = 28. With these
choices for the parameters, the Lorenz system is chaotic, exhibiting the
traits described in the definition given for chaos.

The second component of the definition is clearly satisfied by the Lorenz
system because none of the parameters is stochastic. To demonstrate the
aperiodicity of the system, a numerical simulation of the Lorenz system can
be performed.! A time-series plot of the x; variable is shown in Figure 1.1.
The initial conditions can be chosen arbitrarily.

From direct observation of the time series in Figure 1.1a, it seems reason-
able to say that the x; variable is aperiodic. To be certain that this system is
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Figure 1.1 Both panels were generated using the Lorenz equations and the
parameter values ¢ =10, b=28/3, and r = 28. (a) A representative time series
for the x; Lorenz variable. (b) A typical power spectrum for the x; variable.

not just quasi-periodic, the power spectrum for the x; variable is shown in
Figure 1.1b. The symbol F in the label of Figure 1.1b represents the Fourier
transform operator. The power spectrum is very broad with no particu-
larly conspicuous frequencies apparent. The irregular behavior shown for
x1 also occurs for the other variables as well, and does not diminish with
increasing time.

The third component of the definition for chaos requires sensitive
dependence on initial conditions. Again, the numerical simulation demon-
strates that the Lorenz system satisfies this condition. The simulation can be
run for two identical systems, x and y, starting from very nearly identical
initial conditions. The only difference in their initial conditions was between
the two variables, x; and y,. Specifically, y,(t =0) =x,(t =0) = 107°, It is
shown in Reference 1, Appendix A, and Appendix B that the magnitude
of the difference between the two variables is a function of time, ¢. The
linear #, even though started from nearly identical initial conditions, grows
exponentially.

Another concept from chaos theory can be demonstrated using this
numerical model by plotting x, against x;. We obtain the well-known
strange attractors as explained in Appendix A and Appendix B and in sub-
sequent chapters as well.

1.2 Synchronization

It can be shown! that two identical chaotic systems can be synchronized if
they are coupled together in an appropriate way.
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Before beginning a discussion of the techniques through which systems
can be synchronized, some powerful conceptual tools for understanding
synchronization are introduced here. To illustrate the concept of synchro-
nization, consider two independent Lorenz systems, x and y. Synchroniza-
tion of the two systems occurs if [x(#) — y(#)] goes to zero as t approaches
infinity. The end result of this process is actual equality of the variables,
x1, x2, and x3, and y1, y2, and y3, respectively, as they evolve in time.

Thinking geometrically, the dynamics of the composite system, com-
prising the two Lorenz systems, initially occurs in a six-dimensional phase
space, with three dimensions associated with each individual system. As
the two systems become synchronized, however, the trajectory of the
composite system moves onto a three-dimensional subspace (or hyper-
plane) of the original six-dimensional phase space. This subspace is often
called the synchronization manifold. It contains all of the points where
210 — 31D =22(0) — y2() = x3(1) — y3(1) = 0.

Consider an #n-dimensional chaotic system

i = f(u) 1.2

Pecora and Caroll® proposed decomposing such a system into two
subsystems,

v =g, w) (m dimensional) 1.3)

w = h(v,w) (k dimensional) (1.4

where 7 =m + k, and together these subsystems are the drive system.

The subsystem v of Equation (1.3) is used to drive a response system
with the same functional form as Equation (1.4). Thus, the response system
is written as

w' = h(v,w) (1.5)

The coupling between the systems occurs through the variable v from
the drive system, which is substituted for the analogous v'in the response
system.

To determine whether the two systems will synchronize, the evolution
of the drive response composite system along directions transverse to the
synchronization manifold must be analyzed. To do so, the evolution of the
difference between the two systems, ws =w — w/, is analyzed as

ws = h(v, w) — h(v, w) (1.6)
= Dyh(v,wws for small w; 1.7

ah(v, w)
ow

where Dy,h = is the Jacobian of the w subsystem.



Introduction m 5

To clarify the concept of synchronization and illustrate the Pecora—
Carroll technique, the Lorenz system is analyzed again in light of the
preceding discussion. The drive system is given by the Lorenz equations,

.9'6'1 = O’(.X] = _X'z) (1.8)
.56‘2 = 7X1 — X2 — X1X3 (19)
.7'C3 = X1X2 — bx;, (1.10)

where again, 0 =10, b=28/3, and r =28.

This system is decomposed so that the x; variable is coupled to the
response system; it plays the same role as the v subsystem in Equation
(1.3). The response system, therefore, is given by

1 =0o(xz —2) (1.1D
V3 =)1x2 — by (1.12)

where the variable y, has been completely replaced by x,. A simple
graphical illustration of this sort of decomposition is shown in Figure 1.2.
Thus, the analog to Equation (1.7) is

él Y Y 0 €1
(-6 2))

where e; =x1 —y1 and ez =x3 — 3. In this case, the eigenvalues of the
matrix fortunately do not depend on the drive variable, x;,. There is con-
sequently no need to integrate numerically to determine the conditional
Lyapunov exponents. The eigenvalues of the Jacobian, which are also the
transverse Lyapunov exponents, are easily obtained; A = —o and A, = —b.
Both are negative at all times, and therefore, the error variables e; and e3
converge to zero as [ — 0o. Equation (1.13) is not an approximation, and
consequently, it proves that the systems will synchronize as t — oo, regard-
less of the initial conditions. The synchronization is quite fast relative to

X4 Y1

X2 > X2

X3 Y3
Drive Response

Figure 1.2 Synchronization through decomposition into drive and response
systems. The variable y; has been completely replaced by x,.
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Figure 1.3 (a) Rapid synchronization of two coupled Lorenz systems even when
they are started from very different initial conditions. (b) Synchronization occurs
exponentially quickly. The slope can be calculated from Equation (1.13).

the speed of the oscillations of the system shown in Figure 1.1. Although
Figure 1.3a indicated an exponential divergence of trajectories started at
nearly identical initial conditions, Figure 1.3b shows that the trajectories
between these two coupled systems converge exponentially quickly.

The slope of the line on this log-plot gives the exponent for this con-
vergence. One could predict that this exponent ought to be the Lyapunov
exponent associated with ey, which was earlier determined to be A = —o =
—10. Converting o to an exponent of 10, rather than of e, gives a value of
010 = —4,34. This value matches the slope of the line shown in Figure 1.3b
extremely well.

Other schemes for synchronization include the error feedback.! The
simplicity of this method makes it amenable for experimental realizations
of synchronization. Another of its advantages is that only small amounts of
coupling between two systems are required for synchronization.

u=f(u
y = h(w) (1.14)
y = h(w

and the matching response system is written as
i =fu)+gQy —y)
Yy = b)) (1.15)

Equation (1.15) clearly shows the manner in which the feedback
is to be included. The same type of analysis leads to Equation (1.7).
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Synchronization occurs for appropriate choices of feedback variable y and
the coupling function g. As before, the real parts of the resulting conditional
Lyapunov exponents must be negative for the systems to synchronize. The
magnitude of the feedback term, g(y —)"), goes to zero as the systems
become synchronized. Thus the error feedback technique allows chaotic
systems to become predictable.!

The synchronization schemes that have been discussed thus far have
one drive system and one response system. The error feedback method,
however, permits a generalization to mutual coupling. In mutual coupling,
both systems influence each other. Two systems, mutually coupled through
an error-feedback signal, can be represented as follows:

iw=f(w+gQy —»

Y =hw)

(1.16)
V=) +gly—y)
yl — b(ul)

For mutual coupling, each system is both a drive and response system.

1.2.1 Generalized Synchronization

The preceding discussion has focused on the concept of identical synchro-
nization, a type of synchronization in which two identical coupled systems
exhibit identical chaotic dynamics. A less restrictive manner of synchro-
nization, called generalized synchronization (GS), has been investigated
recently.! GS can occur between systems with mismatched parameters or
even systems that are functionally dissimilar. The resulting dynamics of
these coupled systems are not similar.!

1.3 Chaotic Communication Techniques

The relationship between synchronization and communication is not
unique to chaotic communication. In AM radio communication, a message
is used to modulate the amplitude of a specific frequency sine-wave carrier.
A receiver tuned to that particular carrier frequency is able to recover the
message. Recalling that synchronization (for nonchaotic systems) requires
a common frequency for the two systems, the transmitter and receiver can
be considered synchronized. In digital telecommunication systems, too, the
transmitter and receiver must be synchronized. The receiver must sample
bits with the proper timing to recover the message accurately. A chaoti-
cally fluctuating carrier of information represents a generalization of the
more conventional sinusoidal or digital carriers. As with more traditional
techniques, chaotic communication is also reliant on synchronization. The



