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Preface

PURPOSE AND PREREQUISITES

This book is intended as a textbook for a course in differential equations with linear
algebra, to follow the differential and integral calculus. Since the syllabus of such a
course is by no means standard, we have included more material than can be covered
in a single course—possibly enough material for a two-semester course. This addi-
tional material is included to broaden the menu for the instructor and to increase the
text’s subsequent usefulness as a reference book for the student.

Written for engineering, science, and computer science students, the approach
is aimed at the applications oriented student but is also intended to be rigorous and
to reveal the beauty and elegance of the subject.

Why blend linear algebra with the differential equations? Since mid-twentieth
century, the traditional course in differential equations has been offered in the first or
second semester of the sophomore year and has relied on only a minimum of linear
algebra, most notably the use of determinants. More recently, beginning with the
advent of digital computers on campuses and in industry around the 1960s, a course
or part of a course in linear algebra has become a part of most engineering science
curricula. Given the current interest in introducing linear algebra earlier in curricula,
the growing importance of systems of differential equations, and the natural use of
linear algebra concepts in the study of differential equations, it seems best to move
toward an integrated approach.

FLEXIBILITY

The text is organized so as to be flexible. For instance, it is generally considered
desirable to include some nonlinear phase plane analysis in a course on differential
equations since the qualitative topological approach complements the traditional an-
alytical approach and also powerfully emphasizes the differences between linear and
nonlinear systems. However, that topic usually proves to be a “luxury” to which
one can devote one or two classes at best. Thus, we have arranged the phase plane
material to allow anywhere from a one-class introduction to a moderately detailed
discussion: We introduce the phase plane in only four pages in Section 7.3 in support
of our discussion of the harmonic oscillator and we return to it in Chapter 11. There,
Section 11.2 affords a more detailed overview of the method and provides another
possible stopping point.

To assist the instructor in the syllabus design we list some sections and subsec-
tions as optional but emphasize that these designations are subjective and intended
only as a rule of thumb. (To the student we note that “optional” is not intended to
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mean unimportant, but only as a guide as to which material can be omitted by virtue
of not being a prerequisite for the material that follows.)

SPECIFIC PEDAGOGICAL DECISIONS

Several pedagogical decisions made in writing this text deserve explanation.

1. Chapter sequence: Some instructors prefer to discuss numerical solution early,
even within the study of first-order equations. Placement of the material on
numerical solution near the end of this text does not rule out such an approach
for one could cover Sections 12.1-12.2 on Euler’s method, say, at any point in
Chapters 2 or 3. Here, it seemed preferable to group Chapters 11 (on the phase
plane) and 12 (on numerical solution) together since they complement the ana-
lytical approach, the former being qualitative and the latter being quantitative.
As such, these two chapters might well have been made the final chapters, with
the Laplace transform chapter moving up to precede or to follow Chapter 8
on series solution. Such movement is possible in a course syllabus since other
chapters do not depend on series solution or on the Laplace transform. Also
along these lines, it might seem awkward that Chapters 4 and 5 on vectors and
matrices are separated from Chapter 9 on the eigenvalue problem. This sepa-
ration may not be as great as it appears since in a one-semester course Chapter
8 might well be omitted. In any case in a combined approach to differential
equations and linear algebra it seems logical to intersperse these two topics as
naturally as possible rather than presenting them end-to-end. It may even be
true that for optimal student retention it is good to have a gap between first
meeting the linear algebra in Chapters 4 and 5 and returning to it in Chapter 9,
so that it feels more like one is studying the subject twice.

2. Placing Gauss elimination in Chapter 4 on vectors rather than in Chapter 5
on matrices and linear algebraic equations: Just as one studies the real num-
ber axis before studying functions (mappings from one such axis to another),
it seems appropriate to study vector spaces before studying matrices (which
provide mappings from one vector space to another). In that case we find—in
discussing span, linear dependence, bases, and expansions in Chapter 4—that
we need to solve systems of coupled linear algebraic equations. Hence, we
devote Section 4.5, which precedes that discussion, to Gauss elimination.

3. Introducing the Heaviside function in the chapter on first-order differential
equations rather than in the chapter on the Laplace transform: If the forcing
function is given piecewise, solution of the differential equation by a computer
algebra system (Maple in this text) requires us to give a single expression for
that function, and that can be accomplished using the Heaviside function. Fur-
ther, including the Heaviside function in Chapter 2 makes it possible to include
that topic even if the chapter on the Laplace transform is not covered.

Computer Algebra System
As a representative computer algebra system this text uses Maple, but does not as-



sume prior knowledge of that system. The Maple discussion is confined to subsec-
tions at the end of most sections, immediately preceding the exercises; see, for exam-
ple, Sections 2.2 and 2.3. The reader can bypass those discussions entirely since they
are supplemental and intended to show the student how to carry out various Maple
calculations relevant to the material in that section. In some cases they explain how
text figures were generated. The view represented here is that it would be foolish
not to use the powerful computer algebra systems that are now available, but that
primary emphasis should continue to rest firmly on fundamentals and understanding
of the theory and methods. See also the section on supplements, below.

EXERCISES

End-of-section exercises are of different kinds and are arranged, typically, as follows.
First, and usually near the beginning of the exercise group, are exercises that follow
up on small gaps in the reading, thus engaging the student more fully in the reading
(e.g., Exercises 1 and 2 of Section 3.5). Second, there are usually numerous “drill”
type exercises that ask the student to mimic steps or calculations that are essentially
similar to those demonstrated in the text (e.g., there are 19 matrices to invert by
hand in Exercise 1 of Section 5.6). Third, there are exercises that call for the use
of Maple (e.g., Exercise 3 of Section 5.6 and Exercise 4 of Section 10.4). Fourth,
some exercises involve physical applications (e.g., Exercise 22 of Section 2.4 on the
distribution of a pollutant in a river, Exercises 17 and 18 of Section 5.6 on electrical
circuits, and Exercise 14 of Section 5.8 on computer graphics). And, fifth, there are
exercises intended to extend the text and increase its value as a reference book (e.g.,
Exercises 7-12 of Section 2.3 on the Bernoulli, Riccati, Alembert-Lagrange, and
Clairaut equations, and Exercise 2 of Section 3.3 on envelopes). Answers to selected
exercises (which are denoted in the text by underlining the equation number) are
given at the end of the book.

SYLLABUS DESIGN

Designing a two-semester course is simple in the sense that one would probably cover
virtually everything in the text. Thus, let us restrict our comments to the design of
a one-semester course. As a general comment we note that sections and subsections
are arranged with an eye toward flexibility. In Chapter 10, for instance, one could
limit the coverage to Sections 10.1-10.3 or one could cover Sections 10.1, 10.2, and
10.4. As a specific example, at the University of Delaware mechanical engineers are
currently required to take a three-course sequence in their sophomore year as follows.
In the fall they take a three-credit course on differential equations and linear algebra
following a syllabus somewhat as follows: Chapters 1-7 and 9-10 with these sections
omitted—2.3.3, 2.4.2,3.4,44.2, 44.3,4.5.6,4.5.7,4.8.3,494,495,56.5,5.7.2,
5.8,6.6.2,6.7.3,6.74,9.4.2,9.4.3,10.3.3, and 10.5-10.7.

In the Spring they take two more courses, one covering Laplace transforms,
field theory, and partial differential equations, and the other covering numerical meth-
ods, including the numerical solution of ordinary and partial differential equations.

Preface
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SUPPLEMENTS

For information regarding the Instructor’s Solution Manual and other supplements,
see the publisher’s website, available 1/1/01 at www.prenhall.com/greenberg. The
site will contain quizzes and other text related activities that will be free to all text
users. Suggestions, comments, and errata will be gratefully received at the author’s
e-mail address given below.
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INTRODUCTION TO
DIFFERENTIAL EQUATIONS

1.1 INTRODUCTION

Most phenomena in science and engineering are governed by equations involving
derivatives of one or more unknown functions.

To illustrate, consider the motion of a body of mass m along a straight line,
which we designate as an x axis. Let the mass be subjected to a force F(¢) along that
axis, where ¢ is the time. Then according to Newton’s second law of motion,

d’x
M= = F(), (1)
where x(¢) is the mass’s displacement measured from the origin. If we know the
displacement x(#) and we wish to determine the force F (¢) required to produce that
displacement, then the solution is simple: According to (1), we merely differentiate
the given x(¢) twice and multiply the result by m.

However, if we know the applied force F(¢) and wish to determine the dis-
placement x(¢) that results, then we say that (1) is a “differential equation” on x(z)
since it involves the derivative, more precisely the second derivative in this example,
of the unknown function x (¢) with respect to ¢. The question is: What function x(z),
when differentiated twice with respect to ¢ and then multiplied by m (which is a con-
stant), gives the prescribed function F(¢)? To solve (1) for x(¢), we need to undo the
differentiations; that is, we need to integrate (1), twice in fact.

For definiteness and simplicity, suppose that F () = Fj is a constant, so that (1)
becomes

d°x
"ar

= F. 2)
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F(t)

>

A T

(b)
kx <€— m 7> F(1)

FIGURE 1
Mass/spring system.

Integrating (2) once with respect to ¢ gives

d
e = Bz A, 3)
dt

where A is an arbitrary constant of integration, and integrating again gives

F
mx=70t2+At+B,

SO
x(t) = & (fgtz + At + B). 4)
m \ 2

The constants of integration, A and B, can be found from (3) and (4) if the displace-
ment and the velocity are prescribed at the initial time, which we take to be t = 0.

d )
That is, we can solve for A and B if x(0) and j:— (0) are known. For instance, suppose

we know that d
x(0)=0 and that d—f(O) =0. (5)

Then, by setting ¢ = 0 in (4), we find that B = 0, and by setting = 0 in (3) we find
that A = 0. Thus, (4) gives the solution

x(t) = lf‘ltz, (6)
m 2

which evidently holds for all # > 0, that is, for 0 < ¢t < oo. It is easily verified
that (6) does satisfy both the differential equation (2) and the initial conditions (5).

Unfortunately, most differential equations cannot be solved this readily, that
is, by merely undoing the derivatives by integration. For instance, suppose that the
mass is restrained by a coil spring that supplies a restoring force (i.e., in the direction
opposite to the displacement) proportional to the displacement x, with constant of
proportionality k (Fig. 1a). Then (Fig. 1b) the total force on the mass is —kx + F(¢),
so in place of (1), the differential equation governing the motion is

mfi2 = —kx + F(t)
dt?
or,
d?x

Let us try to solve (7) for x(t) as we did before, by integrating twice with respect to z.
After one integration (7) becomes

dx
m—> +k/x(t)dt=fF(t)dt+A, (®)
where A is the constant of integration. Since F'(¢) is a known function, the inte-
gral of F(z) in (8) can be evaluated. However, since the solution x(¢) is not yet
known, the integral f x(t) dt cannot be evaluated, and we cannot proceed with our



Section 1.2

intended technique of solution-by-repeated-integration. Be clear that it would be in-
correct to state that the integral f x(t)dt in (8) is x(¢)t. The latter would be correct
if x(t) were a constant, but x(¢) is a thus-far-unknown function that is probably not
merely a constant. If we were to distinguish small mistakes from large ones, writing
« f x(t)dt = x t” would be a large one, so be sure to understand this point.

Thus, we see that solving differential equations is not merely a matter of un-
doing the derivatives by direct integration. The theory and technique involved is
considerable and will occupy us throughout this book.

In order to develop the theory, it is convenient, and even necessary, to use
concepts and methods from the mathematical domain known as Linear Algebra.
Our plan is to get started in our study of differential equations until linear alge-
bra concepts are about to force their way upon the discussion. At that point we
take a “break,” in Chapters 4 and 5, to consider as much linear algebra as needed
to proceed with our discussion of differential equations. Additional linear alge-
bra material, on the so-called “eigenvalue problem,” is introduced in Chapters 9
and 10.

O R O AR R BB
1.2 DEFINITIONS AND TERMINOLOGY

To begin, we introduce several fundamental definitions.

Differential equation. By a differential equation we mean an equation contain-
ing one or more derivatives of the function under consideration. Some examples,
which we put forward without derivation, are as follows:

dN
I =kN, (1
d%x
mm—}—kx:F(t), (2)
d?i L1, _dE .
a? T c' T ar )
a0 g .
ﬁ+781n9=0’ (5)
d*y
Elm = —w(x). (6)

Equation (1) is the differential equation governing the population N(z) of a
particular species, where « is a net birth/death rate and ¢ is the time.

Equation (2) governs the linear displacement x () of a body of mass m, sub-
Jected to an applied force F(t), and a restraining spring of stiffness k, as was dis-
cussed in Section 1.1.

Definitions and Terminology 3
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FIGURE 1
Electrical circuit,
equation (3)

- y
)

FIGURE 2
Hanging cable, equation (4).

U

4

FIGURE 3
Pendulum,
equation (5).

.

y(x)

FIGURE 4
Loaded beam, equation (6).

Equation (3) governs the current i(¢) in an electrical circuit containing an in-
ductor with inductance L, a capacitor with capacitance C, and an applied voltage
source of strength E () (Fig. 1), where ¢ is the time.

Equation (4) governs the deflection y(x) of a flexible cable or string, hanging
under the action of gravity, where C is a constant (Fig. 2).

Equation (5) governs the angular motion 6(¢) of a pendulum of length / under
the action of gravity, where g is the acceleration of gravity and ¢ is the time (Fig. 3).

Finally, equation (6) governs the deflection y(x) of a beam subjected to a load
distribution w(x) (Fig. 4), where E and I are physical constants that involve the
beam material and cross sectional shape, respectively.

Ordinary and partial differential equations. We classify a differential equation
as an ordinary differential equation if it contains ordinary derivatives with respect
to a single independent variable. Thus, equations (1)—(6) are ordinary differential
equations (traditionally abbreviated as ODE’s). The independent variable is ¢ in (1),
(2), (3), and (5), and x in (4) and (6), but the mathematics that we develop will be
insensitive to the physical nature of the independent and dependent variables.

If the dependent variable is a function of more than one independent variable
then we can expect the governing differential equation to contain derivatives with
respect to those various independent variables, partial derivatives this time, in which
case we call the differential equation a partial differential equation (abbreviated as
PDE). To illustrate, three of the most important PDE’s in science and engineering
are these:

/<(82—T+82—T+82—T)=pc8—Z (7)
ax2  dyr  3z2 ot’
*T 8T 8T
Fyv) + 2 o+ - 0, (8)
a%w 92w 32w
f(m'*m) =P 9

which are examples of the diffusion equation, the Laplace equation, and the wave
equation, respectively. The first governs the temperature distribution 7' (x, y, z, t)
in some domain of three-dimensional x, y, z space, such as the interior of a hot in-
got that is cooling down under the action of the heat transfer mechanism known as
conduction; the physical constants k, p, ¢ are the conductivity, mass density, and
specific heat of the medium, respectively. In physical terms, (7) expresses the ther-
modynamic law that the rate of change of the heat contained in any volume element
of the material (given by the right-hand side of the equation) is equal to the net rate
of heat flowing into the element through its surface by the mechanism of conduc-
tion (given by the left-hand side of the equation). The second, equation (8), governs
the same phenomenon but in the event that the temperature distribution is in “steady
state”—that is, it is not changing with time. And the third, equation (9), governs the
deflection w(x, y, t) of a stretched membrane such as a drumhead, normal to the x, y



