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Series Preface

Mathematics is playing an ever more important role in the physical and
biological sciences, provoking a blurring of boundaries between scientific
disciplines and a resurgence of interest in the modern as well as the clas-
sical techniques of applied mathematics. This renewal of interest, both in
research and teaching, has led to the establishment of the series: Tezts in
Applied Mathematics (TAM).

The development of new courses is a natural consequence of a high level of
excitement on the research frontier as newer techniques, such as numerical
and symbolic computer systems, dynamical systems, and chaos mix with
and reinforce the traditional methods of applied mathematics. Thus, the
purpose of this textbook series is to meet the current and future needs of
these advances and encourage the teaching of new courses.

TAM will publish textbooks suitable for use in advanced undergraduate
and beginning graduate courses, and will complement the Applied Math-
ematical Sciences (AMS) series, which will focus on advanced textbooks
and research-level monographs.



Preface

“It is impossible to exaggerate the extent to which modern
applied mathematics has been shaped and fueled by the gen-
eral availability of fast computers with large memories. Their
impact on mathematics, both applied and pure, is comparable
to the role of the telescopes in astronomy and microscopes in
biology.”

— Peter Laz, Siam Rev. Vol. 31 No. 4

Congratulations! You have chosen to study partial differential equations.
That decision is a wise one; the laws of nature are written in the language
of partial differential equations. Therefore, these equations arise as models
in virtually all branches of science and technology. Our goal in this book
is to help you to understand what this vast subject is about. The book is
an introduction to the field. We assume only that you are familiar with ba-
sic calculus and elementary linear algebra. Some experience with ordinary
differential equations would also be an advantage.

Introductory courses in partial differential equations are given all over
the world in various forms. The traditional approach to the subject is to
introduce a number of analytical techniques, enabling the student to de-
rive exact solutions of some simplified problems. Students who learn about



viii Preface

computational techniques on other courses subsequently realize the scope
of partial differential equations beyond paper and pencil.

Our approach is different. We introduce analytical and computational
techniques in the same book and thus in the same course. The main reason
for doing this is that the computer, developed to assist scientists in solv-
ing partial differential equations, has become commonly available and is
currently used in all practical applications of partial differential equations.
Therefore, a modern introduction to this topic must focus on methods suit-
able for computers. But these methods often rely on deep analytical insight
into the equations. We must therefore take great carc not to throw away
basic analytical methods but seek a sound balance between analytical and
computational techniques.

One advantage of introducing computational techniques is that nonlinear
problems can be given more attention than is common in a purely analytical
introduction. We have included several examples of nonlinear equations in
addition to the standard linear models which are present in any introduc-
tory text. In particular we have included a discussion of reaction-diffusion
equations. The reason for this is their widespread application as important
models in various scientific applications.

Our aim is not to discuss the merits of different numerical techniques.
There are a huge number of papers in scientific journals comparing different
methods to solve various problems. We do not want to include such discus-
sions. Our aim is to demonstrate that computational techniques are simple
to use and often give very nice results, not to show that even better results
can be obtained if slightly different methods are used. We touch briefly
upon some such discussion, but not in any major way, since this really be-
longs to the field of numerical analysis and should be taught in separate
courses. Having said this, we always try to use the simplest possible nu-
merical techniques. This should in no way be interpreted as an attempt to
advocate certain methods as opposed to others; they are merely chosen for
their simplicity.

Simplicity is also our reason for choosing to present exclusively finite
difference techniques. The entire text could just as well be based on finite
element techniques, which definitely have greater potential from an appli-
cation point of view but are slightly harder to understand than their finite
difference counterparts.

We have attempted to present the material at an easy pace, explaining
carefully both the ideas and details of the derivations. This is particularly
the case in the first chapters but subsequently less details are included and
some steps are left for the reader to fill in. There are a lot of exercises
included, ranging from the straightforward to more challenging ones. Some
of them include a bit of implementation and some experiments to be done
on the computer. We strongly encourage students not to skip these parts.
In addition there are some “projects.” These are either included to refresh
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the student’s memory of results needed in this course, or to extend the
theories developed in the present text.

Given the fact that we introduce both numerical and analytical tools, we
have chosen to put little emphasis on modeling. Certainly, the derivation
of models based on partial differential equations is an important topic, but
it is also very large and can therefore not be covered in detail here.

The first seven chapters of this book contain an elementary course in
partial differential equations. Topics like separation of variables, energy ar-
guments, maximum principles, and finite difference methods are discussed
for the three basic linear partial differential equations, i.e. the heat equa-
tion, the wave equation, and Poisson’s equation. In Chapters 8-10 more
theoretical questions related to separation of variables and convergence of
Fourier series are discussed. The purpose of Chapter 11 is to introduce
nonlinear partial differential equations. In particular, we want to illustrate
how easily finite difference methods adopt to such problems, even if these
equations may be hard to handle by an analytical approach. In Chapter 12
we give a brief introduction to the Fourier transform and its application to
partial differential equations.

Some of the exercises in this text are small computer projects involving
a bit of programming. This programming could be done in any language.
In order to get started with these projects, you may find it useful to pick
up some examples from our web site, http://www.ifi.uio.no/ pde/, where
you will find some Matlab code and some simple Java applets.

Acknowledgments

It is a great pleasure for us to thank our friends and colleagues for a lot of
help and for numerous discussions throughout this project. In particular,
we would like to thank Bent Birkeland and Tom Lyche, who both partici-
pated in the development of the basic ideas underpinning this book. Also
we would like to thank Are Magnus Bruaset, Helge Holden, Kenneth Hvis-
tendahl Karlsen, Jan Olav Langseth, Hans Petter Langtangen, Glenn Terje
Lines, Knut Mgrken, Bjgrn Fredrik Nielsen, Gunnar Olsen, Klas Samuels-
son, Achim Schroll, Wen Shen, Jan Sgreng, and Asmund @degérd for read-
ing parts of the manuscript. Finally, we would like to thank Hans Birkeland,
Truls Flatberg, Roger Hansen, Thomas Skjgnhaug, and Fredrik Tyvand for
doing an excellent job in typesetting most of this book.

Oslo, Norway, July 1998 Aslak Tveito
Ragnar Winther



Texts in Applied Mathematics

(continued from page ii)

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39-

40.

41.
42.

43.
44.

45.
46.
47.
48.
49.

Tveito/Winther: Introduction to Partial Differential Equations: A Computa-
tional Approach.

Gasquet/Witomski: Fourier Analysis and Applications: Filtering, Numerical
Computation, Wavelets.

Brémaud: Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues.
Durran: Numerical Methods for Wave Equations in Geophysical Fluid Dyna-
mics.

Thomas: Numerical Partial Differential Equations: Conservation Laws and
Elliptic Equations.

Chicone: Ordinary Differential Equations with Applications.

Kevorkian: Partial Differential Equations: Analytical Solution Techniques,
Second Edition.

Dullerud/Paganini: A Course in Robust Control Theory: A Convex Approach.
Quarteroni/Sacco/Saleri: Numerical Mathematics.

Gallier: Geometric Methods and Applications: For Computer Science and
Engineering.

Han/Atkinson: Theoretical Numerical Analysis: A Functional Analysis Fra-
mework.

Brauer/Castillo-Chdvez: Mathematical Models in Population Biology and Epi-
demiology.

Davies: Integral Transforms and Their Applications, Third Edition.
Deuflhard/Bornemann: Scientific Computing with Ordinary Differential Equa-
tions.

Deuflhard/Hohmann: Introduction to Scientific Computing.
Knabner/Angermann: Numerical Methods for Elliptic and Parabolic Partial
Differential Equations.

Larsson/Thomée: Partial Differential Equations with Numerical Methods.
Pedregal: Introduction to Optimization.

Ockendon/Ockendon: Waves and Compressible Flow.

Hinrichsen/Pritchard: Mathematical Systems Theory I.

Bullo/Lewis: Geometric Control of Mechanical Systems.



Contents

1 Setting the Scene
What Is a Differential Equation? . . . . . .. ... ... ..

2

1.1

1.2

1.3
1.4

1.1.1

Concepts . . . .. e

The Solution and Its Properties . . . . . . .. ... ... ..

1.2.1

An Ordinary Differential Equation . . . . . ... ..

A Numerical Method . . . . . .. .. ... .. ........
Cauchy Problems . . . . . . ... . ... ... ........

1.4.1
1.4.2
1.4.3
1.44

First-Order Homogeneous Equations . . . . . . . ..
First-Order Nonhomogeneous Equations . . . . . . .
The Wave Equation . . . . .. ... .........
The Heat Equation . . . . . .. . ... ... .....

1.5 EXErCiSES . . . « o v v i e i e e e e e e e e e e e e e e
16 Projects . . . . . . . o i i

Two-Point Boundary Value Problems
2.1 Poisson’s Equation in One Dimension . . . ... .... ..

2.2

2.1.1
2.1.2
2.1.3

Green’s Function . . . . . . . . . . . .. ... ...
Smoothness of the Solution . . . . ... ... .. ..
A Maximum Principle . . . . .. ... ... .....

A Finite Difference Approximation . . . . . ... ... ...

2.2.1
2.2.2
2.2.3
2.2.4

Taylor Series . . . . . .. ... ... ... ...
A System of Algebraic Equations . . . . .. .. ...
Gaussian Elimination for Tridiagonal Linear Systems
Diagonal Dominant Matrices . . .. ... ... ...



xii

Contents

2.2.5 Positive Definite Matrices . . . . . . . . ... .. ..
2.3 Continuous and Discrete Solutions . . . . . ... ... ...
2.3.1 Difference and Differential Equations . ... . . . . ..
2.3.2 Symmetry : : : : c s e s w s mos o @ e e 8w w0
2.3.3 Uniqueness . . . . . . . . ...
2.3.4 A Maximum Principle for the Discrete Problem . . .
2.3.5 Convergence of the Discrete Solutions . . . ... ..
2.4 Eigenvalue Problems . . . . . . ... ... ... .......
2.4.1 The Continuous Eigenvalue Problem . . . . . . . ..
2.4.2 The Discrete Eigenvalue Problem . . . . . . . .. ..
25 Exercises : : « s: s o s 8 sw @ e m w8 55 £ 8 8 5§ 6 8§
2.6 Projects . . . . .. .. L

The Heat Equation
3.1 ABriefOverview . . . . . . . .. .. oo
3.2 Separation of Variables. . . . . . ... .. ... .. ... ..
3.3 The Principle of Superposition . . . ... ... ... .. ..
3.4 Fourier Coefficients . . . . . . . ... ... ... ... ...
3.5 Other Boundary Conditions . . . . . . ... ... ......
3.6 The Neumann Problem . . .. ... ... ..........
3.6.1 The Eigenvalue Problem . . . . . . . ... ... ...
3.6.2 Particular Solutions . . . . . ... ... ... .. ..
3.6.3 A Formal Solution . . . . ... ... ... ... ..
3.7 Energy Arguments . . . . ... ... ... ... ...
3.8 Differentiation of Integrals . . . . . . . .. .. ... ... ..
39 EXEICISEB 1w wmmwn s s s § 5 5 3 38 s ¥ oo g®ss w s
310 Projects - - : s sowos v s s e s e s s s R w o m s Ew e

Finite Difference Schemes for the Heat Equation

4.1 An Explicit Scheme . . . . .. ... ... 0000

4.2 Fourier Analysis of the Numerical Solution . ... ... ..
4.2.1 Particular Solutions . . . .. ... ... .......
4.2.2 Comparison of the Analytical and Discrete Solution
4.2.3 Stability Considerations . . . . . . ... ... .. ..
4.2.4 The Accuracy of the Approximation . . ... .. ..
4.2.5 Summary of the Comparison . .. .. ... ... ..

4.3 Von Neumann’s Stability Analysis . ... ..... ... ..
4.3.1 Particular Solutions: Continuous and Discrete . . . .

432 Examples : . . s wos o5 sm @ ememm s e s s 58
4.3.3 A Nonlinear Problem . ... ... ..........
4.4 An Implicit Scheme . . . . . . . .. ... ... L.,
4.4.1 Stability Analysis. . . . ... ... ... 0oL
4.5 Numerical Stability by Energy Arguments . ... ... ..
4.6 Exercises . . . . . . . . .. e e



Contents xiii

5 The Wave Equation 159
5.1 Separation of Variables . . . . .. .. ... ... ....... 160
5.2 Uniqueness and Energy Arguments . . . . . ... ... ... 163
5.3 A Finite Difference Approximation . . . .. ... .. .... 165

5.3.1 Stability Analysis. . . . .. .. ... ... ...... 168
5.4 EXEICISES . . . . v v v v i i e e e e e e e e e e e e 170

6 Maximum Principles 175
6.1 A Two-Point Boundary Value Problem . . . . .. ... ... 175
6.2 The Linear Heat Equation . . . . . . . . ... ... ... .. 178

6.2.1 The Continuous Case . . . ... ... ........ 180
6.2.2 Uniqueness and Stability . .. ............ 183
6.2.3 The Explicit Finite Difference Scheme . . . . . . .. 184
6.2.4 The Implicit Finite Difference Scheme . . . . . . .. 186
6.3 The Nonlinear Heat Equation . . . . . ... ... ... ... 188
6.3.1 The Continuous Case . . . . ... . ... ...... 189
6.3.2 An Explicit Finite Difference Scheme . . . . . . . .. 190
6.4 Harmonic Functions . . . . ... ... ... ......... 191
6.4.1 Maximum Principles for Harmonic Functions . . . . 193
6.5 Discrete Harmonic Functions . . . . . ... ... ... ... 195
6.6 EXErcises . . . . . . v i i e 201

7 Poisson’s Equation in Two Space Dimensions 209
7.1 Rectangular Domains . . . . . ... ............. 209
7.2 Polar Coordinates . . . . ... .. .. ... ... ..., 212

721 TheDise .. :::::::ssssposewmsssss 213
722 AWedge ..... ... ... ... ... ... 216
7.2.3 A Corner Singularity . . . . . ... ... ... .... 217
7.3 Applications of the Divergence Theorem . . ... ... .. 218
7.4 The Mean Value Property for Harmonic Functions . . . . . 222
7.5 A Finite Difference Approximation . . . . .. ... ... .. 225
7.5.1 The Five-Point Stencil . . . . . . ... ... ..... 225
7.5.2 An Error Estimate . . . . . .. ... ......... 228
7.6 Gaussian Elimination for General Systems . . . . . . . . .. 230
7.6.1 Upper Triangular Systems . . . . . .. ... ... .. 230
7.6.2 General Systems . . . . ... ... ... 231
7.6.3 Banded Systems . .. ... .............. 234
7.6.4 Positive Definite Systems . . . . . .. ... ... .. 236
77 EXEICISES . . v v v v v e e e e e e e e e e e e e 237

8 Orthogonality and General Fourier Series 245

8.1 The Full Fourier Series . . . . . . . ... ... ........ 246
8.1.1 Even and Odd Functions . .. ... ......... 249
8.1.2 Differentiation of Fourier Series . . . . . .. .. ... 252

8.1.3 TheComplexForm. . ... .............. 255



xiv

10

11

12

Contents

8.1.4 ChangingtheScale . . . . . . ... ... ... ....
8.2 Boundary Value Problems and Orthogonal Functions . . . .
8.2.1 Other Boundary Conditions . . . . . ... ... ...
8.2.2 Sturm-Liouville Problems . . . .. . ... ... ...
8.3 The Mean Square Distance . . . ... ... ... ......
8.4 General Fourier Series . . . ... ...............
8.5 A Poincaré Inequality . . .. ... ... ... ........
86 Exercises . . . .. . .. . ... e

Convergence of Fourier Series

9.1 Different Notions of Convergence . . . . . .. ... .....
9.2 Pointwise Convergence . . . . . . .. ... ... .......
9.3 Uniform Convergence . . ... ................
9.4 Mean Square Convergence . . . . . . . . . . ... ... ...
9.5 Smoothness and Decay of Fourier Coefficients . . . . . . . .
9.6 Exercises . . . ... ... ... ... ...

The Heat Equation Revisited

10.1 Compatibility Conditions . . . . .. ... ... ... ....

10.2 Fourier’s Method: A Mathematical Justification . . . . . . .
10.2.1 The Smoothing Property . .. ... ... ... ...
10.2.2 The Differential Equation . . . . . . ... ... ...
10.2.3 The Initial Condition . . ... ... ... ... ...
10.2.4 Smooth and Compatible Initial Functions . . . . . .

10.3 Convergence of Finite Difference Solutions . . . . . . .. ..

10.4 Exercises . . . . . . ... e

Reaction-Diffusion Equations
11.1 The Logistic Model of Population Growth . . . ... .. ..
11.1.1 A Numerical Method for the Logistic Model . . . . .
11.2 Fisher’s Equation . . . . . ... .. .. ... .........
11.3 A Finite Difference Scheme for Fisher’s Equation . . . . . .
11.4 An Invariant Region . . . ... ... ... ..........
11.5 The Asymptotic Solution . . . . ... ... ... ......
11.6 Energy Arguments . . . . . .. ... ... ..........
11.6.1 An Invariant Region . . . ... ... ... ... ...
11.6.2 Convergence Towards Equilibrium . ... ... ...
11.6.3 Decay of Derivatives . . . . . ... ... .......
11.7 Blowup of Solutions . . . . .. ... ... ... .......
11.8 Exercises . . . . . . .. . . .. ...
11.9 Projects . . . . . . . . . . ..

Applications of the Fourier Transform
12.1 The Fourier Transform . . . . . ... ... ... .......



Contents XV

12.3 The Inversion Formula . . . . . . . . . ... . ... ... .. 372
12.4 The Convolution . . . . . . . . . . . v 375
12.5 Partial Differential Equations . . . . . . .. . ... ... .. 377

12.5.1 The Heat Equation . . . . . .. ... .. ... .... 377

12.5.2 Laplace’s Equation in a Half-Plane . . . . . .. ... 380
12.6 EXEICISES . » « o v v v o e e e e e e e e e e e 382
References 385

Index 389



1
Setting the Scene

You are embarking on a journey in a jungle called Partial Differential Equa-
tions. Like any other jungle, it is a wonderful place with interesting sights
all around, but there are also certain dangerous spots. On your journey,
you will need some guidelines and tools, which we will start developing in
this introductory chapter.

1.1 What Is a Differential Equation?

The field of differential equations is very rich and contains a large vari-
ety of different species. However, there is one basic feature common to all
problems defined by a differential equation: the equation relates a function
to its derivatives in such a way that the function itself can be determined.
This is actually quite different from an algebraic equation, say

z2-2z+1 =0,

whose solution is usually a number. On the other hand, a prototypical
differential equation is given by

u'(t) = u(t).
The solution of this equation is given by the function

u(t) = ce',
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where the constant ¢ typically is determined by an extra condition. For
instance, if we require

u(0) = 1/2,

we get ¢ = 1/2 and u(t) = ge’. So keep this in mind; the solution we seek
from a differential equation is a function.

1.1.1 Concepts

We usually subdivide differential equations into partial differential equa-
tions (PDEs) and ordinary differential equations (ODEs). PDEs involve
partial derivatives, whereas ODEs only involve derivatives with respect to
one variable. Typical ordinary differential equations are given by

(a) '(t) = u(t),

(b) w'(t) = u*(t),

(c) ¥'(t) = wu(t) + sin(t) cos(t), (1.1)
(d) u"(z) +u/(z) = a?,

(e) u""(z) = sin(z).

Here (a), (b) and (c) are “first order” equations, (d) is second order, and
(e) is fourth order. So the order of an equation refers to the highest order
derivative involved in the equation. Typical partial differential equations
are given by!

(f) ue(z,t) = ugz(z, ),

(g) Utt(:l?,t) = uII(xvt)y

(h) uTl‘(z7 y) + uyy(xv y) == 01

(1) we(z,t) = (k(u(z,t))u(z,t))_,

(]) utt(zvt) = uzr(xv t) - ua(:l),t)’ (12)

1
(k) us(z,t) + (iuz(z,t))x = Uz, (T, 1),
() wlz,t) + (2° + t*)ug (2, ) = 0,
(m) uge(z,t) + Ugzzz(z,t) = 0.
Again, equations are labeled with orders; (1) is first order, (f), (g), (h), (¢),
(j) and (k) are second order, and (m) is fourth order.
Equations may have “variable coefflicients,” i.e. functions not depending

on the unknown u but on the independent variables; ¢, z, or y above. An
equation with variable coefficients is given in (I) above.

P a2
'Here u; = ‘5—‘2‘, Urpy = 5)(,}:’5, and so on.



