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PREFACE

Clustering has become an increasingly important topic in recent years, caused
by the glut of data from a wide variety of disciplines. However, due to the lack
of good communication among these communities, similar theories or algo-
rithms are redeveloped many times, causing unnecessary waste of time and
resources. Furthermore, different terminologies confuse practitioners, espe-
cially those new to cluster analysis. Clear and comprehensive information in
this field is needed. This need, among others, has encouraged us to produce
this book, seeking to provide a comprehensive and systematic description of
the important clustering algorithms rooted in statistics, computer science, com-
putational intelligence, and machine learning, with an emphasis on the new
advances in recent years. The book consists of 11 chapters, ranging from the
basic concept of cluster analysis, proximity measures, and cluster validation,
to a wide variety of clustering algorithms, including hierarchical clustering,
partitional clustering, neural network-based clustering, kernel-based cluster-
ing, sequential data clustering, large-scale data clustering, and high dimen-
sional data clustering. It also includes rich references and illustrates examples
in recent applications, such as bioinformatics and web document clustering.
Exercises are provided at the end of the chapters to help readers understand
the corresponding topics.

The book is intended as a professional reference and also as a course text-
book for graduate students in math, science, or engineering. We expect it to
be particularly interesting to computer scientists and applied mathematicians
applying it to data-intensive applications like bioinformatics, data mining,
sensor networks, and computer security, among many other fields. It is a
natural fit for computational intelligence researchers, who often must use

ix
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clustering for feature selection or data reduction. The book will not have
extensive assumptions of prerequisite background but will provide enough
detail to allow the reader to select the method that best fits his or her
application.

We have been working on cluster analysis for many years. Support from
the National Science Foundation, Sandia Laboratories, and the M.K. Finley
Missouri endowment is gratefully acknowledged.

We are grateful to the thousands of researchers who have contributed to
this field, many of whom are our current and past collaborators, mentors, role
models, and friends. It is not possible to reference all of the countless publica-
tions in this area, but we are always interested in finding outstanding ones we
may have overlooked, perhaps to cover in a future edition. We thank the
anonymous Associate Editor of our 2005 paper in IEEE Transactions on
Neural Networks* for the part on classification and clustering. We wish to
thank the reviewers for their helpful comments. We are grateful to Bart Kosko
for encouraging us to write this book after the success of the journal article.
The manuscript of the book has been used in a course at Missouri University
of Science and Technology. Many thanks to the graduate students Soumya De,
Tae-hyung Kim, Ryan Meuth, Paul Robinette, John Seiffertt IV, and
Hanzheng Wang for their valuable feedback and help in solving the homework
problems. We also wish to thank Ms. Barbie Kuntemeier for her proofreading
assistance.

Finally, Rui Xu would like to thank his family: Xiaomin, Benlin, Shuifeng,
Wei, Jie, and Qiong; and Don Wunsch would like to thank Hong and Donnie.
Without their encouragement, understanding, and patience, this book would
not exist.

* Reference (Xu and Wunsch, 2005), which remained on the IEEE Explore top 100 list for over
a year.
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CHAPTER 1

CLUSTER ANALYSIS

1.1. CLASSIFICATION AND CLUSTERING

We are living in a world full of data. Every day, people deal with different
types of data coming from all types of measurements and observations. Data
describe the characteristics of a living species, depict the properties of a
natural phenomenon, summarize the results of a scientific experiment, and
record the dynamics of a running machinery system. More importantly, data
provide a basis for further analysis, reasoning, decisions, and ultimately, for
the understanding of all kinds of objects and phenomena. One of the most
important of the myriad of data analysis activities is to classify or group data
into a set of categories or clusters. Data objects that are classified in the same
group should display similar properties based on some criteria. Actually, as
one of the most primitive activities of human beings (Anderberg, 1973; Everitt
et al., 2001), classification plays an important and indispensable role in the
long history of human development. In order to learn a new object or under-
stand a new phenomenon, people always try to identify descriptive features
and further compare these features with those of known objects or phenom-
ena, based on their similarity or dissimilarity, generalized as proximity, accord-
ing to some certain standards or rules. As an example, all natural objects are
basically classified into three groups: animal, plant, and mineral. According to
the biological taxonomy, all animals are further classified into categories of
kingdom, phylum, class, order, family, genus, and species, from general to
specific. Thus, we have animals named tigers, lions, wolves, dogs, horses,

Clustering, by Rui Xu and Donald C. Wunsch, II
Copyright © 2009 Institute of Electrical and Electronics Engineers



2 CLUSTER ANALYSIS

sheep, cats, mice, and so on. Actually, naming and classifying are essentially
synonymous, according to Everitt et al. (2001). With such classification infor-
mation at hand, we can infer the properties of a specific object based on the
category to which it belongs. For instance, when we see a seal lying easily on
the ground, we know immediately that it is a good swimmer without really
seeing it swim.

Basically, classification systems are either supervised or unsupervised,
depending on whether they assign new data objects to one of a finite number
of discrete supervised classes or unsupervised categories, respectively (Bishop,
1995; Cherkassky and Mulier, 1998; Duda et al.,2001). In supervised classifica-
tion, the mapping from a set of input data vectors, denoted as x € R, where
d is the input space dimensionality, to a finite set of discrete class labels, rep-
resented asy € 1,..., C,where C is the total number of class types, is modeled
in terms of some mathematical function y = y(x,w), where w is a vector of
adjustable parameters. The values of these parameters are determined (opti-
mized) by an inductive learning algorithm (also termed inducer), whose aim
is to minimize an empirical risk functional (related to an inductive principle)
on a finite data set of input-output examples, (x;,y;),i =1, ... , N, where N is
the finite cardinality of the available representative data set (Bishop, 1995;
Cherkassky and Mulier, 1998; Kohavi, 1995). When the inducer reaches con-
vergence or terminates, an induced classifier is generated (Kohavi, 1995).

In unsupervised classification, also called clustering or exploratory data
analysis, no labeled data are available (Everitt et al., 2001; Jain and Dubes,
1988). The goal of clustering is to separate a finite, unlabeled data set into a
finite and discrete set of “natural,” hidden data structures, rather than to
provide an accurate characterization of unobserved samples generated from
the same probability distribution (Baraldi and Alpaydin, 2002; Cherkassky
and Mulier, 1998). This can make the task of clustering fall outside of the
framework of unsupervised predictive learning problems, such as vector quan-
tization (Cherkassky and Mulier, 1998) (see Chapter 4), probability density
function estimation (Bishop, 1995) (see Chapter 4), and entropy maximization
(Fritzke, 1997). It is noteworthy that clustering differs from multidimensional
scaling (perceptual maps), whose goal is to depict all the evaluated objects in
a way that minimizes topographical distortion while using as few dimensions
as possible. Also note that, in practice, many (predictive) vector quantizers
are also used for (non-predictive) clustering analysis (Cherkassky and Mulier,
1998).

It is clear from the above discussion that a direct reason for unsupervised
clustering comes from the requirement of exploring the unknown natures of
the data that are integrated with little or no prior information. Consider, for
example, disease diagnosis and treatment in clinics. For a particular type of
disease, there may exist several unknown subtypes that exhibit similar mor-
phological appearances while responding differently to the same therapy. In
this context, cluster analysis with gene expression data that measure the activi-
ties of genes provides a promising method to uncover the subtypes and thereby
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determine the corresponding therapies. Sometimes, the process of labeling
data samples may become extremely expensive and time consuming, which
also makes clustering a good choice considering the great savings in both cost
and time. In addition, cluster analysis provides a compressed representation
of the data and is useful in large-scale data analysis. Aldenderfer and Blash-
field (1984) summarized the goals of cluster analysis in the following four
major aspects:

« Development of a classification;
- Investigation of useful conceptual schemes for grouping entities;
 Hypothesis generation through data exploration;

« Hypothesis testing or the attempt to determine if types defined through
other procedures are in fact present in a data set.

Nonpredictive clustering is a subjective process in nature that precludes an
absolute judgment as to the relative efficacy of all clustering techniques
(Baraldi and Alpaydin, 2002; Jain et al., 1999). As pointed out by Backer and
Jain (1981), “in cluster analysis a group of objects is split up into a number of
more or less homogeneous subgroups on the basis of an often subjectively
chosen measure of similarity (i.e., chosen subjectively based on its ability to
create “interesting” clusters), such that the similarity between objects within
a subgroup is larger than the similarity between objects belonging to different
subgroups.” Moreover, a different clustering criterion or clustering algorithm,
even for the same algorithm but with different selection of parameters, may
cause completely different clustering results. For instance, human beings may
be classified based on their ethnicity, region, age, socioeconomic status, educa-
tion, career, hobby, weight and height, favorite food, dressing style, and so on.
Apparently, different clustering criteria may assign a specific individual to very
different groups and therefore produce different partitions. However, there is
absolutely no way to determine which criterion is the best in general. As a
matter of fact, each criterion has its own appropriate use corresponding to
particular occasions, although some of them may be applied to wider situa-
tions than others. Figure 1.1 illustrates another example of the effect of sub-
jectivity on the resulting clusters. A coarse partition divides the regions into
four major clusters, while a finer one suggests that the data consist of nine
clusters. Whether we adopt a coarse or fine scheme depends on the require-
ment of the specific problem, and in this sense, we would not say which clus-
tering results are better, in general.

1.2. DEFINITION OF CLUSTERS

Clustering algorithms partition data objects (patterns, entities, instances,
observances, units) into a certain number of clusters (groups, subsets, or
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Fig. 1.1. Tllustration of subjectivity of cluster analysis. Clustering at a coarse level
produces four major clusters, while a finer clustering leads to nine clusters.

categories). However, there is no universally agreed upon and precise defini-
tion of the term cluster. Everitt et al. (2001) indicate that “formal definition
(of cluster) is not only difficult but may even be misplaced.” In spite of this
difficulty, several operational definitions are still available, as summarized by
Everitt (1980) and illustrated as follows:

“A cluster is a set of entities which are alike, and entities from different
clusters are not alike.”

A cluster is “an aggregate of points in the test space such that the distance
between any two points in the cluster is less than the distance between any
point in the cluster and any point not in it.”

“Clusters may be described as continuous regions of this space (d-
dimensional feature space) containing a relatively high density of points, sepa-
rated from other such regions by regions containing a relatively low density
of points.”

Clearly, a cluster in these definitions is described in terms of internal homo-
geneity and external separation (Gordon, 1999; Hansen and Jaumard, 1997;
Jain and R. Dubes, 1988), i.e., data objects in the same cluster should be
similar to each other, while data objects in different clusters should be dis-
similar from one another. Both the similarity and the dissimilarity should be
elucidated in a clear and meaningful way. Here, we give some simple mathe-
matical descriptions of two types of clustering, known as partitional and hier-
archical clustering, based on the discussion in Hansen and Jaumard (1997).

Given a set of input patterns X = {xy, ... , X, ... , Xy}, Where x; = (x;1, Xp, ... ,
Xja) € R, with each measure x; called a feature (attribute, dimension, or
variable):

1. Hard partitional clustering attempts to seek a K-partition of X, C =
{C,, ..., Ck} (K £ N), such that
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° C,;ﬁ(b,l:l,,K, (11)
- ULa=x; (1.2)
- CNCi=¢,i,j=1,,Kandi#]j (1.3)

2. Hierarchical clustering attempts to construct a tree-like, nested structure
partition of X, H = {H}, ... , Hyp} (Q £ N), such that C;e H,, C;e H;,and
m>limply C;c Cior C;n C;=¢foralli,j#i,m,l=1,...,0.

For hard partitional clustering, each data object is exclusively associated
with a single cluster. It may also be possible that an object is allowed to belong
to all K clusters with a degree of membership, u;; € [0,1], which represents the
membership coefficient of the j™ object in the /" cluster and satisfies the fol-
lowing two constraints:

M=

u; =1,Vj, (1.4)

and

M=

w,; <N, Vi, (1.5)

1

-
I

as introduced in fuzzy set theory (Zadeh, 1965). This is known as fuzzy cluster-
ing and will be discussed in Chapter 4.

Figure 1.2 depicts the procedure of cluster analysis with the following four
basic steps:

1. Feature selection or extraction. As pointed out by Jain et al. (1999, 2000)
and Bishop (1995), feature selection chooses distinguishing features
from a set of candidates, while feature extraction utilizes some transfor-
mations to generate useful and novel features from the original ones.
Clearly, feature extraction is potentially capable of producing features
that could be of better use in uncovering the data structure. However,
feature extraction may generate features that are not physically inter-
pretable, while feature selection assures the retention of the original
physical meaning of the selected features. In the literature, these two
terms sometimes are used interchangeably without further identifying
the difference. Both feature selection and feature extraction are very
important to the effectiveness of clustering applications. Elegant selec-
tion or generation of salient features can greatly decrease the storage
requirement and measurement cost, simplify the subsequent design
process, and facilitate the understanding of the data. Generally, ideal
features should be of use in distinguishing patterns belonging to different
clusters,immune to noise, and easy to obtain and interpret. We elaborate
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Fig. 1.2. Clustering procedure. The basic process of cluster analysis consists of four
steps with a feedback pathway. These steps are closely related to each other and deter-
mine the derived clusters.

on the discussion of feature extraction in Chapter 9 in the context of data
visualization and dimensionality reduction. Feature selection is more
often used in the context of supervised classification with class labels
available (Jain et al., 2000; Sklansky and Siedlecki, 1993). Jain et al.
(2000), Liu and Yu (2005), and Theodoridis and Koutroumbas (2006) all
provided good reviews of the feature selection techniques for supervised
learning. A method of simultaneous feature selection and clustering,
under the framework of finite mixture models, was proposed in Law
et al. (2004). Kim et al. (2000) employed the genetic algorithm for feature
selection in a K-means algorithm. Mitra et al. (2002) introduced a
maximum information compression index to measure feature similarity
and examine feature redundancy. More discussions on feature selection
in clustering were given in Dy and Brodley (2000), Roth and Lange
(2004), and Talavera (2000).

2. Clustering algorithm design or selection. This step usually consists of
determining an appropriate proximity measure and constructing a crite-
rion function. Intuitively, data objects are grouped into different clusters
according to whether they resemble one another or not. Almost all clus-
tering algorithms are explicitly or implicitly connected to some particular
definition of proximity measure. Some algorithms even work directly on
the proximity matrix, as defined in Chapter 2. Once a proximity measure
is determined, clustering could be construed as an optimization problem
with a specific criterion function. Again, the obtained clusters are depen-
dent on the selection of the criterion function. The subjectivity of cluster
analysis is thus inescapable.
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Clustering is ubiquitous, and a wealth of clustering algorithms has
been developed to solve different problems from a wide variety of fields.
However, there is no universal clustering algorithm to solve all problems.
“It has been very difficult to develop a unified framework for reason-
ing about it (clustering) at a technical level, and profoundly diverse
approaches to clustering” (Kleinberg, 2002). Therefore, it is important
to carefully investigate the characteristics of a problem in order to select
or design an appropriate clustering strategy. Clustering algorithms that
are developed to solve a particular problem in a specialized field usually
make assumptions in favor of the application of interest. For example,
the K-means algorithm is based on the Euclidean measure and hence
tends to generate hyperspherical clusters. However, if the real clusters
are in other geometric forms, K-means may no longer be effective, and
we need to resort to other schemes. Similar considerations must be kept
in mind for mixture-model clustering, in which data are assumed to come
from some specific models that are already known in advance.

. Cluster validation. Given a data set, each clustering algorithm can always
produce a partition whether or not there really exists a particular struc-
ture in the data. Moreover, different clustering approaches usually lead
to different clusters of data, and even for the same algorithm, the selec-
tion of a parameter or the presentation order of input patterns may affect
the final results. Therefore, effective evaluation standards and criteria are
critically important to provide users with a degree of confidence for the
clustering results. These assessments should be objective and have no
preferences to any algorithm. Also, they should be able to provide mean-
ingful insights in answering questions like how many clusters are hidden
in the data, whether the clusters obtained are meaningful from a practical
point of view or just artifacts of the algorithms, or why we choose one
algorithm instead of another. Generally, there are three categories of
testing criteria: external indices, internal indices, and relative indices.
They are defined on three types of clustering structures, known as parti-
tional clustering, hierarchical clustering, and individual clusters (Gordon,
1998; Halkidi et al., 2002; Jain and Dubes, 1988). Tests for situations in
which no clustering structure exists in the data are also considered
(Gordon, 1998) but seldom used because users are usually confident of
the presence of clusters in the data of interest. External indices are based
on some prespecified structure, which is the reflection of prior informa-
tion on the data and is used as a standard to validate the clustering solu-
tions. Internal tests are not dependent on external information (prior
knowledge). Instead, they examine the clustering structure directly from
the original data. Relative criteria emphasize the comparison of different
clustering structures in order to provide a reference to decide which one
may best reveal the characteristics of the objects. Cluster validation will
be discussed in Chapter 10, with a focus on the methods for estimating
the number of clusters.



