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PREFACE

This book is an introductory text suitable for a one-semester course. It covers
ali the bastc principles of digital systems and logic design and provides as well
an infroductory presentation to microprocessor and microprocessor-based sys-
tems The present and growing importance of microprocessors makes it impor-
tan: thut these versatile components be introduced into an engineering or com-
putzr science curriculum at the earliest opportunity.

1 he subject of logical variables and boolean algebra is covered in Chapter 1.
gates and logical connectives are described and analyzed. The binary
number svsiem is introduced here principally to allow some systemization of
tinti: tebles. Chapter 2 deals with the standard forms of logic functions and with
Karnaugh maps. Chapter 3 considers basic combinational circuits including
decoders. encoders, code converters. multiplexers and demultiplexers. It is
emphasized that all these components are available as integrated-circuit chips,
and a brief discussion 1s provided of families of integrated circuits. Conven-
itons dealing with the characterization of control terminals on chips are
explained. and this discussion leads to a consideration of the convention of
mixed jogic which, in certain applications, is gaining popularity. Examples are
given of the newer logic symbols which are presently being introduced for com-
binational and other components. The basic storage element, the flip-flop. is ex-
amined in some detail in Chapter 4. A careful distinction is drawn between a
latch and a thp-flop. The characteristics required of a flip-flop in order that it be
able to function properly in a synchronous system are examined. Assemblages
of flip-flops nto storage registers, shift registers, and counters are also consid-
ered. Again, in this chapter it is emphasized that the components described are
available as integrated-circuit packages and examples of such devices are
described. Chapter 5 deals with the subject of arithmetic operations. principally
addition. The fook-ahead carry principle is explained and analyzed. Memory is
the subject of Chapter 6. This chapter covers the RAM. both static and dynam-
ic. the ROM. the PLA. serial memories. and memories for bulk storage. Also
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XVi PREFACE

described are timing considerations in reading from and writing into memo-
ries. Chapter 7 introduces the subject of the analysis and design of sequential
systems. both synchronous and fundamental mode. The concepts of flow
diagrams, state diagrams, and tables are presented. and also described are
procedures tor eliminating redundant states. While there is some discussion of
sequential circuits in Chapter 4 in connection with shift registers and counters.
the formal organized and systematized presentation is given in Chapter 7.

The material on controllers in Chapter 8 is written with a view toward
MICTOProcessors. A microprocessor consists of a number of storage and werk-
ing registers. and ALU, and a controller. The controller appers to be endowed
with uncanny abilitics. It does exacily the right thing at the right time in
precisely the right sequence and. having completed one task. proceeds uner-
ringly to the next., Truly enough. the controller is nothing more than a special-
purpose sequential circuit involving no diflicult concepts. Still, to the beginniag
student, the vagueness associated with the controller is inevitably a scurce of
uneasiness. It is very difficult to accept the generalizations with which con-
trollers are described when there is no concrete and specific example that can
serve as a model. Chapter 8 is written in a manner which will, hopetully,
provide some reassurance to the uninitiated. It inakes clear at the outset that all
of the digital operations which are possible are relatively few and fundamen-
tally simple, and that all are executed in response to the enabling of a gate or se
of gates. Next there is presented the architecture of a very simple system which
then requires a controller to be effective. A controlier is designed in detail. first
by using the procedures of Chapter 7 which vield a sequential system with 2
minimum number of states. Next this initial controller is replaced by a shift-
register controller. The shift-register controller uses more hardware but has the
great merit that the details of its operation are easily apparent and that required
modifications for the purpose of elaboration can be added almost by inspection.
Finally a controller is designed in detail to serve a very simple minded (4-1n-
struction) “computer.” The design makes clear in an entirely unambiguous
manner how a controller can be made to modify its behavior in response 1o an
instruction. Also in this chapter the student encounters the concepts of the pro-
gram counter, the memory address register, and the instruction register. The
reader sees, in simple form. the overall architecture which characterizes «
microprocessor as well as the typical content of a memory which holds instruc-
tion and data for a stored program computation.

Chapter 9 is also written with an eye toward microprocessors. Here there
is presented the architecture of a simple (16-instruction) computer. The stiuc-
ture provides a preview of the type of instructions to be encountered in more
sophisticated systems. The jump and subroutine call instructions are presented
and some simple programs are written in an assembly language. Also in this
chapter the subject of control by microprogramming is presented and simple
examples given.

Some authors invent a hypothetical microprocessor to have an example
through which to introduce the subject. This procedure has the unfortunate fea-
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ture that the student misses the exposure to a real device while the hypothetical
microprocessor eventually turns out to be very nearly as complicated as a real
component. Other authors undertake to include a number of real microproces-
sors in their descriptions and explanations. This approach. all teo often. leads
to vague generalizations. A third widely nsed approach, also used in this text. is
to concentrate on a single real device. This method allows the analysis to be
pointed and <pecific and. furthermore. a good familiarity with one device
provides o hackeround that allows an easy understanding of other devices. In
this text. the microprocessor selected for study is the 8080 which is widely
known and used and is highlyv regarded. Even though the 8080 has been up-
dated by the RURS, we have staved with the 8080 precisely because it is some-
what less sophisticated and. therefore. better suited to an introductory presen-
tation. The 8080, its architecture. instructions. and programming is the subject
of Chapter 16, Chapter 11 is devoted entirely to input-cutput operation of
the 8OK0O.

There is some more material in the text than can be covered conveniently
in one semester. From the author’s prejudicial point of view an effective way of
employving the book is to use 1t for one full semester and for about one fifth of a
second semester. Thereafter. for the remainder of the second semester. a new
text should be adopted that covers microprocessors and microcomputers gen-
eraliy and in greater depth. On the other hand. it is entirely feasible to cover the
bhook in one semester by omitting some material which is not essential in a first
approach Candidates for omission include the following sections: .17, 1.25,
1.26.2.12, 5.10 through 5.12. 6.10 through 6.17. 7.6 through 7.9. 7.11 through
7.16.8.12 and 8.13.

A large number of homework problems have been provided. A solutions
manual is available that instructors can obtain from the publisher. An answer
book iy also available.

| am grateful to Professor Mansour Javid. chairman of the Department of
Electrical Engineering at the City College of New York, who read a large part
of the manuscript and made many valuable suggestions. Mr. Jay Lewis Tuub
provided a great deal of very effective assistance in the preparation of the
manuscript and I am pleased to express to him my most sincere thanks. Mrs.
Joyce Rubin’s skillful tvping of the manuscript is appreciated.

Herbert Taub
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CHAPTER

ONE

ALGEBRA OF LOGICAL VARIABLES

1.1 VARIABLES AND FUNCTH{3 N

We are familiar with the concept of a ¢ wricie nnd with the concept of a func-
rion ot a variable. The field ot a variabice, 1.e., the range of vaiues whicii can be
assumed by a variable v, can by specified in a limitless number of ways Forex-
ample. v may range over all the real numbers from minues to plus infinitv: or 1
may be restricted to the range from —17 to —4: or v mayv be restricted to the
positive integers from 1 to 10: and so on.

A funcrion 1s a rule by which we determine the value of a second (depen
dent) variable v from the (independent) variable x. the dependency of v on o
being written v = f(x). Thus, for example. suppose we intend that v is to be de-
termined from v through the rule that vis to be multiplied by itselt. that this
product is to be multiplied by 5. and that therzafter 3 is to be added. We would
then express the functional relationship between v and v by the equation
v = 5x% + 3. In this simple example we determined v by applying the mathemat-
ical processes of multiplication and addition. However, when the number of ai-
lowable values of v is finite. it is possible to specify @ function simply by making
a rable in which v is given for each value of v. When the number of possible val-
ues for vis small. it may well be feasible and most convenient to use such a
table. Consider that in the example referred to above (y = Sx" + 3) we restrict x
to the integral values v =0, 1. 2. and 3. Then. as is indicated in Fig. 1.1-1. the
functional relationship between y and v can be specified in tabular form.

By an easy extension of these clemental ideas. it is clear that the variables,
dependent and independent. need not be numerical. For example, let the in-
dependent variable v have as its field the colors of the traftic light at an intersec-
tion. and let the dependent variable v represent the expected behavior of a mo-
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Xy S S ——

] o v V= fla)

0 3 - . -

| 8 Green ! Continue

21 3 Amber | Slow down

3] 48 Red Stop

Figure i.1-1 A numer cal funcion Vigure 1.1-2 A functicnal relationstip

torist approaching the intersection. Then the functional refationship fetween v
and v is as given in Fig 102 The valines which can be assumed by v oare
expressed by the declarative stutements “the fight is green™ or “the light i
amber™ o Cthe light is red.” Similaily the vatues which can be assumed by
are “the motorist should continne.” ete.

1.2 LOGICAE VARIABILES
A logical vanable s a variable which has three distinctive properties:

I. The logical variable miy assume one or the other of only nivo possible val-

ues.

2. The valucs are expiessed by declarative statements, as in the traflic-light
example given above, .

3. The two possible vaiues expressed by the declarative statements must be
such that, on the basis of human reason. i.e.. on the basis of logic, they are
muttally exelusive.

7

7 Although. as noted. the variable need not have numerical significance.
there i1s no reason to preclude situations in which the variable does. Thus the
variable x may have the two and only two. alternative, mutually exclusive val-
ues expressed by the statements “the value of vis 77 and “the value of xis 13.7
Other properties of the logical variable will appear in the roliowing discussion,
in which we return to the example of the traffic light.

Suppose that we postulate that the tratfic light can be enly green or red. We
exclude the possibility that the light may be amber and exclude as well the pos-
sibility of an interval when the light is changing and neither green nor red is
showing. Then in this case the variable x in the table of Fig. 1.1-2 is a logical
variable. Either we shall have that “the light is green,” which we can represent
as v = green. or we shall have that v = red. Note especially that because of the
mutual exclusivity. if we want to indicate that v = red we can indicate it either in
that way or by writing v = nor green. In a simpler noiation, the “not™ Is
represented by placing a bar over the vaiue. Thus v = not green can be written
v = green. Finally we have that x = grcen = red.
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1.3 VALUES FOR A LOGICAL VARIABLE

in the general case of an arbitrary type of variable. say the type of variable
which assumes numerical values. the variables may represent anything. Thus x
and » omay represent temperature or pressure or distance or velocity or time,
ete. In considering the functional relationship between variables from a4 mathe-
matical point of view we have no interest in what is represented by the vari-
abicw. Thus from the equation v = Sy= + 3 we¢ have the result that v = 8 when
+ = Lguiic independently of what v and v may stand fer. The values which can
be assumed by the vanables are the same in the sense that in both cases the val-
ues are numbers,

In the same way. let us assign to the two possible values of our logical vari-
able two names, so that we can consider a variable independently of what it
may represent. Any two readily distinguishable names would be suitable. but it
would also be useful to have names which convey the notion of mutual
exclusivity. For this reason such names suggest themselves as “hot and cold.”
“hnoand out.” “high and Jow.” ete. Another passible set of names. which we
shali comment on further at a later point, uses the values “true” and “false.”
Thus a jogical variable, say 4. will either have the value 4 = true (abbreviated
A =T) or the value A4 = false (abbreviated A = F). If, indeed the fact is that
A = true (4 =T) we can equally well write that 4 = falsc (4 = ).

Now let us return to our traffic-light example. {Since we are dealing with
logical variables. we shall follow the more usual custom of using A and Z tor the
independent and dependent variables, respectively. rather than v and v.) The
functional relationship between the color of the light and the motorist’s proper
response is given in Fig. 1.3-1a. Suppose that in the matter of the variable 4 we
arbitrarily assign the value 4 = T to the statement “the light is red.” Then auto-
matically A = F represents the statement “the light is green.” Similarlyv let us
arbitrarily associate the value Z = T with the statement “‘the motorist con-
tinues.” Then the functional relationship between the color of the light and the
behavior of the motorist is equally well given by Fig. 1.3-15. If the assignment
of 4 and Z with color and motorist behavior were differently made. the pattern
of entries T and F in Fig. 1.3-1h would appear different. but of course the func-
tional relationship between color and behavior would not be altered.

A table like that in Fig. 1.3-1h with entries T and F is called a vruth table.

A T/— T A | Z=14
Green | Continue F 1T
Red Stop T F

el) (5)

Figure 1.3-1 A functional rejationship in («) becomes a truth table in (b))
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Figure 1.4-1 The four functions of a single variable.

1.4 FUNCTIONS OF A SINGLE LOGICAL VARIABLE

All the possible functions Z = f(A) of a single logical variable are given in the
four truth tables of Fig. 1.4-1. To assure ourselves that we have missed none of
the possible functions we proceed in the following way. In the 4 column we
simply list its two possible values F and T. We now have riwvo places in the /
column where we must make entries. In each of the places there are /ivo possi-
ble entries. Hence the number of distinct possible column Z is 2 X 2 = 4,
These four are given. and we can be contident that there are no more. In Fig.
Ld=1a, since 0 each row the entry under Z s the same as under 4, we write
/= A InFig L+-1h Z=A InFig. |.1-d¢ Z=F.and in Fig. 1.4-1d 7 = T.
The reader may well decide to take the attitude that Fig. [.4-1¢ and o reallv do
not express functions at all. Forin one case Z is false and in the other case 7 15
true quite independently of the logic value of A.

1.5 FUNCTIONS OF TWO LOGICAL VARIABLES

We consider now the functions Z = f(A4. B) of two logical variables 4 and B. To
form such functions we would start out with a truth table as in Fig. 1.5-1. Here
we have provided a row for each possible combination of log.c values for 4 and
&. There being two variables and two values for each. four combtnations are
poassible. Now. to generate a function we need only make entries in the column
tor Z. There are four entries to be made. and for each entry there are two possi-
bilives. Hence the total number of distinct columns possible under Z 1s
2 2 X 2 x 2= 16, and correspondingly there are 16 possible tunctions of two
variables. As we shall see, and as was the case with the functions of a simpie
variable., we may want to take the attitude that some of these “lunctions™ are

A yél =14 8)

FF
FT
T|F
T r

Figure 1.5-1 An incompleted truth table for two vanables
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really not functions at all. We shall eventually consider all the possible func-
tions. For the present we consider some of the functions which are of special
nterest.

The AND Function

As we have already noted. a logical function is defined by a truth table. The
function 7 = f(A. B). which is defined by the truth table in Fig. 1.5-2.1is called
the AND function. We express the dependence of Z on 4 and B by writing

Z=A4 aND B (1.5-1)

The motivation for this terminology lies in the consideration. which can be
verified from the truth table, that Z = T only when A and B are both true. An
alternate symbolism for the aND function is

/Z=A-B (1.5-2)
or even more simply
Z=AB (1.5-3)

Equations (1.5-2) and (1.5-3) suggest that Z is the result of a “'multiplication™ in
which 4 and B are factors. Of course A4 and B are not numbers, and multiplica-
tion in the usual arithmetic sense is not intended. Nonetheless. as we shall see.
the suggestion of multiplication conveved by the svmbolism is deliberate. and
the function 4 AND B is often referred to as the logical product of A and B.

A first property of the anD function is that it is commutative: i.e.. if the
orderof 4 and B is interchanged (4 and B are commuted). the function Z is unal-
tered, so that

Z=AB = B (1.5-4)

That such is the case is immediately apparent from the truth table of Fig. 1.5-1.
I'we had arranged the table so that the B column was the leftmost rather than
the 4 column. the entries in the Z column wouid not change.

A second property of the aND function is that it is associarive. Suppose
that we have three variables 4. B, and C and that we first form the logical prod-
uct 4B, Since this product is itself a logicul variable, we can form its logical
product with C. giving (4B)C. On the other hand. suppose we form first BC

N
|

A AaND B

—_— T T
- M-

Figure 1.5-2 Truth table which defines the axp function.



