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Preface

If you are acquainted with neural networks, you will find that automatic
control problems provide applications — industrially useful — of your knowl-
edge, and that they have a dynamic or evolutionary nature lacking in static
pattern-recognition. Control ideas are also prevalent in the study of the
natural neural networks found in animals and human beings.

If you are interested in the practice and theory of control, you will
find that artificial neural networks offer a way to synthesize nonlinear
controllers, filters, state observers and system identifiers using a parallel
method of computation.

The purpose of this book is to acquaint those in either field with current
research involving both. The book project originated with O. M. Omid-
var. Chapters were obtained by an open call for papers and by invitation.
The topics requested included mathematical foundations; biological control
architectures; applications of neural network control methods (neurocon-
trol) in high technology, process control, and manufacturing; reinforcement
learning; and neural network approximations to optimal control. The re-
sponses included leading edge research, exciting applications, surveys and
tutorials to guide the reader who needs pointers for research or applica-
tion. The authors’ addresses are given in the Contributors list; their work
represents both academic and industrial thinking.

This book is intended for a wide audience — those professionally involved
in neural network research, such as lecturers and primary investigators in
neural computing, neural modeling, neural learning, neural memory, and
neurocomputers. Neural Systems for Control focuses on research in natural
and artificial neural systems directly applicable to control or making use
of modern control theory.

Each of the chapters was refereed; we are grateful to those anonymous
referees for their careful work.

Omid M. Omidvar, University of David L. Elliott, University of
the District of Columbia Maryland, College Park
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Chapter 1

Introduction: Neural Networks
and Automatic Control

David L. Elliott

1 Control Systems

Through the years artificial neural networks (Frank Rosenblatt’s percep-
trons, Bernard Widrow’s adalines, Albus’” CMAC) have been invented with
both biological ideas and control applications in mind, and the theories of
the brain and nervous system have used ideas from control system theory
(e.g. Norbert Wiener’s cybernetics). This book attempts to show how the
control system and neural network researchers of the present day are coop-
erating. Since members of both communities like signal flow charts, I will
use a few of these schematic diagrams to introduce some basic ideas.

Figure 1 is a stereotypical control system. (The dashed lines with arrows
indicate the flow of signals; ¥ is a summing junction where the feedback is
subtracted from the command to obtain an error signal.)

One box in the diagram is usually called the plant, or the object of con-
trol. It might be a manufactured object like the engine in your automobile,
or it might be your heart-lung system. The arrow labeled command then
might be the accelerator pedal of the car, or a chemical message from your
brain to your glands when you perceive danger —in either case the com-
mand being to increase the speed of some chemical or mechanical process.
The output is the controlled quantity. It could be the engine revolutions-
per-minute, which shows on the tachometer; or it could be the blood flow

+ Error Untpint
Command >_@ > Plant p----- |->
! ]
1 1
: : Measurements
:_ Feedback !
T Control <------

FIGURE 1. Control system.



2 Elliott

to your tissues. The measurements of the internal state of the plant might
include the output plus other engine variables (manifold pressure for in-
stance) or physiological variables (blood pressure, heart rate, blood carbon
dioxide). As the plant responds to the command, somewhere under the
car’s hood or in your body’s neurochemistry, a local feedback control may
use these measurements to regulate the response.

Automobile design engineers may try, perhaps using electronic fuel in-
jection, to give you fuel economy and keep the emissions of unburnt fuel
low at the same time; such a design uses modern control principles, and
the automobile industry is beginning to implement these ideas with neural
networks.

To be able to use mathematical or computational methods to improve
the control system’s response to its input command, the plant and the
feedback controller are modeled mathematically by differential equations,
difference equations, or, as will be seen, by a neural network with internal
time lags as in Chapter 6.

Some of the models in this book are industrial rolling mills (Chapter 9),
a small space robot (Chapter 12), robot arms (Chapter 7), and in Chapter
11 aerospace vehicles that must adapt or reconfigure their controls after
the system has changed, perhaps from damage. Industrial control is often
a matter of adjusting one or more simple controllers capable of supplying
feedback proportional to error, accumulated error (“integral”), and rate
of change of error (“derivative”)— a so-called PID controller. Methods of
replacing these familiar controllers with a neural network-based device are
shown in Chapter 10.

The motivation for control system design is often to optimize a cost, such
as the energy used or the time taken for a control action. Control designed
for minimum cost is called optimal control.

The problem of approximating optimal control in a practical way can
be attacked with neural network methods, as in Chapter 12; its authors,
control theorists, use the new “receding-horizon” approach of Mayne and
Michalska. Chapter 7 also is concerned with control optimization by neural
network methods. One type of optimization (achieving a goal as fast as
possible under constraints) is applied by such methods to the real industrial
problem of Chapter 9.

The control systems in our bodies, such as sensory, pulmonary and cir-
culatory systems, have evolved well enough to keep us alive and running
in a dangerous world. Control aspects of the human nervous system are
addressed in Chapters 3, 4, and 5. Chapter 3 is from a team using neural
networks in signal processing; it shows some ways that speech process-
ing may be simulated and sequences of phonemes recognized using hidden
Markov methods. Chapter 4, whose authors work in neurology and com-
puter science, uses a neural network with inputs from a model of the hu-
man arm to see how the arm’s motions may map to the cerebral cortex in
a computational way. Chapter 5, which was written by a team representing
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control engineering, chemical engineering, and human physiology, examines
the workings of blood pressure control (the vagal baroreceptor reflex) and
shows how to mimic this control system for chemical process applications.

2 What is a Neural Network?

The “neural networks” referred to in this book are artificial neural net-
works, a technique for using physical hardware or computer software to
model computational properties analogous to some that have been pos-
tulated for real networks of nerves, such as the ability to learn and store
relationships. A neural network can efficiently approximate and interpolate
multivariate data that might otherwise require huge databases; such tech-
niques are now well accepted for nonlinear statistical fitting and prediction
(“ridge regression”).

A commonly used artificial neuron, shown in Figure 2, is a simple struc-
ture, having just one nonlinear function of a weighted sum of several data
inputs i, ...,xy; this version, often called a perceptron, computes what
statisticians call a ridge function (as in “ridge regression”),

n

y=o(wo + Zwﬂz‘),

=1

and for the discussion below assume that the function o is a smooth, in-
creasing, bounded function.

Examples of sigmoid functions (so called from their “S” shape) in com-
mon use are

oi(u) = tanh(u),
oa(u) = 1/(1+ exp(—u)),
o3(u) = u/(1+|ul).
\
X _;___5“,1\ WO y=c5(§wx )
| Sy 11 G B A =i
s O s
: Z/// sigmoid function
5 ol O
f Wl'l

FIGURE 2. Feedforward neuron.
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\% s N yl a] = y2
¥ ﬂ neuronl—’---—@, o 2
g =" P —— A
2 15)--->v
. "‘%,neﬂn 2 |72 T

-7 a
Xy ’

hidden layer

output layer

input layer
FIGURE 3. A small feedforward network.

The weight-adjustment algorithm will use the derivatives of these sigmoid
functions, which are easily evaluated for the examples we have listed by
using the differential equations they satisfy:

0-1 = 1- (01)27
5 = o02(l—o09),
o3 = (1—]o3])>

Statisticians use many other such functions, including sinusoids. In proofs
of the adequacy of neural networks to represent quite general smooth func-
tions of many variables, the sinusoids are an important tool.

The weights w; are to be selected or adjusted to make this ridge function
approximate some function which may or may not be known in advance.
The basic principles of weight adjustment were originally motivated by
ideas from the psychology of learning (see Chapter 2).

In order to learn functions more complex than ridge functions, one must
use networks of perceptrons. The simple example of F igure 3 shows a feed-
forward perceptron network, the kind you will find most often in the follow-
ing chapters.! Thus the general idea of feedforward networks is that they
allow us to realize functions of many variables by adjusting the network
weights. Here is a typical scenario corresponding to Figure 2:

e From experiment, obtain numerical data samples of each of three dif-
ferent “input” variables, which we arrange as an array X = (z1, 22, z3),
and an “output” variable Y that has a functional relation to the in-
puts, ¥ = F(X).

e X is used as input to two perceptrons with adjustable weight arrays
[wij,we; 1 5 = 1,2, 3]; their outputs are y, yo.

e This network’s single output is Y = ajy; + asy2, where aq,as can

IThere are several other kinds of neural network in the book, such as CMAC and
radial basis function networks.



