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Preface

There is nothing radically new about the techniques we use in modern molecular
modelling. Classical mechanics hasn’t changed since the time of Newton, Hamilton
and Lagrange, the great ideas of statistical mechanics and thermodynamics were
discovered by Ludwig Boltzmann and J. Willard Gibbs amongst others and the
basic concepts of quantum mechanics appeared in the 1920s, by which time J. C.
Maxwell’s famous electromagnetic equations had long since been published.

The chemically inspired idea that molecules can profitably be treated as a collec-
tion of balls joined together with springs can be traced back to the work of D. H.
Andrews in 1930. The first serious molecular Monte Carlo simulation appeared in
1953, closely followed by B. J. Alder and T. E. Wainwright’s classic molecular
dynamics study of hard disks in 1957.

The Hartrees’ 1927 work on atomic structure is the concrete reality of our
everyday concept of atomic orbitals, whilst C. C. J. Roothaan’s 1951 formulation
of the HF-LCAO model arguably gave us the basis for much of modern molecular
quantum theory.

If we move on a little, most of my colleagues would agree that the two recent
major advances in molecular quantum theory have been density functional theory,
and the elegant treatment of solvents using ONIOM. Ancient civilizations believed in
the cyclical nature of time and they might have had a point for, as usual, nothing is
new. Workers in solid-state physics and biology actually proposed these models many
years ago. It took the chemists a while to catch up.

Scientists and engineers first got their hands on computers in the late 1960s. We
have passed the point on the computer history curve where every 10 years gave us an
order of magnitude increase in computer power, but it is no coincidence that the
growth in our understanding and application of molecular modelling has run in
parallel with growth in computer power. Perhaps the two greatest driving forces in
recent years have been the PC and the graphical user interface. I am humbled by the
fact that my lowly 1.2 GHz AMD Athlon office PC is far more powerful than the
world-beating mainframes that I used as a graduate student all those years ago, and
that I can build a molecule on screen and run a B3LYP/6-311++G(3d, 2p) calcula-
tion before my eyes (of which more in Chapter 20).

We have also reached a stage where tremendously powerful molecular modelling
computer packages are commercially available, and the subject is routinely taught as
part of undergraduate science degrees. I have made use of several such packages to
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produce the screenshots; obviousty they look better in colour than the greyscale of
this text.

There are a number of classic (and hard) texts in the field; if I'm stuck with a basic
molecular quantum mechanics problem, 1 usuvally reach for Eyring, Walter and
Kimball’s Quantum Chemistry, but the going is rarely easy. I make frequent mention
of this volume throughout the book.

Equally, there are a number of beautifully produced elementary texts and software
reference manuals that can apparently transform you into an expert overnight. It’s a
two-edged sword, and we are victims of our own success. One often meets self-
appointed experts in the field who have picked up much of the jargon with little of
the deep understanding. It’s no use (in my humble opinion) trying to hold a con-
versation about gradients, hessians and density functional theory with a colleague
who has just run a molecule through one package or another but hasn’t the slightest
clue what the phrases or the output mean.

It therefore seemed to me (and to the Reviewers who read my New Book Proposal)
that the time was right for a middle course. I assume that you are a ‘Beginner’ in the
sense of Chambers Dictionary—‘someone who begins; a person who is in the early
stages of learning or doing anything..." — and I want to tell you how we go about
modern molecular modelling, why we do it, and most important of all, explain much
of the basic theory behind the mouse clicks. This involves mathematics and physics,
and the book neither pulls punches nor aims at instant enlightenment. Many of the
concepts and ideas are difficult ones, and you will have to think long and hard about
them; if it’s any consolation, so did the pioneers in our subject. I have given many of
the derivations in full, and tried to avoid the dreaded phrase ‘it can be shown that’.

There are various strands to our studies, all of which eventually intertwine. We start
off with molecular mechanics, a classical treatment widely used to predict molecular
geometries. In Chapter 8 I give a quick guide to statistical thermodynamics (if such a
thing is possible), because we need to make use of the concepts when trying to model
arrays of particles at non-zero temperatures. Armed with this knowledge, we are
ready for an assault on Monte Carlo and Molecular Dynamics.

Just as we have to bite the bullet of statistical mechanics, so we have to bite the
equally difficult one of quantum mechanics, which occupies Chapters 11 and 12. We
then turn to the quantum treatment of atoms, where many of the sums can be done on
a postcard if armed with knowledge of angular momentum.

The Hartree—Fock and HF-LCAO models dominate much of the next few chap-
ters, as they should. The Hartree—Fock model is great for predicting many molecular
properties, but it can’t usually cope with bond-breaking and bond-making. Chapter 19
treats electron correlation and Chapter 20 deals with the very topical density func-
tional theory (DFT). You won’t be taken seriously if you have not done a DFT
calculation on your molecule.

Quantum mechanics, statistical mechanics and electromagnetism all have a certain
well-deserved reputation amongst science students; they are hard subjects. Unfortu-
nately all three feature in this new text. In electromagnetism it is mostly a matter
of getting to grips with the mathematical notation (although I have spared you
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Maxwell’s equations), whilst in the other two subjects it is more a question of mast-
ering hard concepts. In the case of quantum mechanics, the concepts are often in direct
contradiction to everyday experience and common sense. I expect from you a certain
level of mathematical competence; I have made extensive use of vectors and matrices
not because I am perverse, but because such mathematical notation brings out the
inherent simplicity and beauty of many of the equations. I have tried to help by giving
a mathematical Appendix. which should also make the text self-contained.

I have tried to put the text into historical perspective, and in particular I have
quoted directly from a number of what I call keynote papers. It is interesting to read
at first hand how the pioneers put their ideas across, and in any case they do it far
better than me. For example, I am not the only author to quote Paul Dirac’s famous
statement

The underlying Physical Laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the
difficulty is only that exact application of these laws leads to equations much
too complicated to be soluble.

I hope you have a profitable time in your studies, and at the very least begin to
appreciate what all those options mean next time you run a modelling package!

Alan Hinchliffe
alan.hinchliffe@umist.ac.uk
Manchester 2003
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1 Introduction

1.1 Chemical Drawing

A vast number of organic molecules are known. In order to distinguish one from
another, chemists give them names. There are two kinds of names: frivial and system-
atic. Trivial names are often brand names (such as aspirin, and the amino acid pheny-
lanine shown in Figure 1.1). Trivial names don’t give any real clue as to the structure of
a molecule, unless you are the recipient of divine inspiration. The IUPAC systematic
name for phenylanine is 2-amino-3-phenyl-propionic acid. Any professional scien-
tist with a training in chemistry would be able to translate the systematic name into
Figure 1.1 or write down the systematic name, given Figure 1.1. When chemists
meet to talk about their work, they draw structures. If I wanted to discuss the structure
and reactivity of phenylanine with you over a cup ot coffee, I would draw a sketch, such
as those shown in Figure 1.1, on a piece of paper. There are various conventions that we
can follow when drawing chemical structures, but the conventions are well understood
amongst professionals. First of all, I haven’t shown the hydrogen atoms attached to the
benzene ring (or indeed the carbon atoms within), and I have taken for granted that you
understand that the normal valence of carbon is four. Everyone understands that hydro-
gens are present, and so we needn’t clutter up an already complicated drawing.

The right-hand sketch is completely equivalent to the left-hand one; it’s just that I
have been less explicit with the CH, and the CH groups. Again, everyone knows what
the symbols mean.

1 have drawn the benzene ring as alternate single and double bonds, yet we under-
stand that the C—C bonds in benzene are all the same. This may not be the case in the
molecule shown; some of the bonds may well have more double bond character than
others and so have different lengths, but once again it is a well-understood conven-
tion. Sometimes a benzene ring is given its own symbol Ph or ¢. Then again, I have
drawn the NH, and the OH groups as ‘composites’ rather than showing the individual
O—H and N—H bonds, and so on. T have followed to some extent the convention that
all atoms are carbon atoms unless otherwise stated.

Much of this is personal preference, but the important point is that no one with a
professional qualification in chemistry would mistake my drawing for another mole-
cule. Equally, given the systematic name, no one could possibly write down an incor-
rect molecule.



