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Foreword

This text is a revised and augmented version of a course given to graduate
and Ph.D. students in the context of the doctoral school for physics in the
French-speaking part of Switzerland. This doctoral school provides a common
teaching program for the universities of Bern, Fribourg, Geneva, Neuchéatel
and Lausanne, as well as for the Swiss Federal Institute of Technology in Lau-
sanne. The scope of the course should be sufficiently general to interest both
experimentalists and theoreticians wishing to engage in research in condensed
matter or nuclear and particle physics. The prerequisites are an introductory
course to quantum mechanics and elements of classical electromagnetism and
statistical mechanics.

Our main concern was how to maintain a reasonably broad level of know-
ledge for students with different orientations, in a world of research where
the price of survival is extreme specialization and competitiveness. Is it still
possible in the available time to provide a cultural education in physics by
relatively elementary means and in an optimized form? We believe that this
is an essential pedagogical duty. Attempting to meet this challenge has de-
termined the conception of this book: each individual part of it is standard
and without novelty but should belong, in our opinion, to the basic culture of
every physicist; only their common organization in a single house of decent
size might possibly be put to our credit.

We have tried to keep a balance between formal developments and the
physical applications: in fact they cannot be separated insofar as mathemati-
cal methods develop naturally under the necessity of resolving physical que-
stions. Concerning the applications, we have always given a short description
of the phenomenological context so that the main information about physi-
al facts is available from the start without recourse to other sources. In the
formal developments, we adopt the usual notation of physicists, while aiming
at mathematical precision. The reader is warmly encouraged to improve his
practice of the formalism by checking and reproducing for himself the algebra
given in the text. Some more extended exercises are proposed at the end of
each chapter in order to illustrate additional aspects not introduced in the
main text.

For each of the systems discussed in this book, we have tried to exhibit
how the main physical ideas can be captured in a formalized description by
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the appropriate tools. In this spirit several important branches of physics
are represented: solid state physics (cohesion and dielectric properties of
the electron gas, phonons and electron-phonon interactions), low tempera-
ture physics (superconductivity and superfluidity), nuclear physics (pairing
of nucleons), matter and radiation (interaction of atoms with the quantum-
electromagnetic field), particle physics (interaction by exchanged interme-
diate particles, mass generation by the Higgs mechanism).

These choices could be considered rather conservative, compared to topi-
cal new developing areas. However we think that they still serve as indispensa-
ble paradigms for the understanding of any more advanced subject. Also, in
keeping with our aim of offering a broad formative view to our readers, they
enable us to illustrate similarities and differences between concepts stemming
from various domains in physics. In this respect, the first chapter presents a
parallel exposition of classical electromagnetism and classical elasticity, with
the purpose of introducing and comparing the notions of photon and pho-
non. Moreover, quantum fields (Chap. 8) cannot be understood without a
good knowledge of their classical analogues. Chapter 2 is devoted to a simple
description of collective effects due to Bose and Fermi statistics. Bose conden-
sation is described and the role of Fermi statistics for the stability of matter
and in astrophysical objects is discussed. In the third chapter we develop the
so-called second quantized formalism in full generality without reference to
any particular system, so that it will be available in any situation where the
number of particles varies. Chapters 4, 5 and 6 are devoted to the use of the
variational method. It is hoped that the reader will appreciate the wide range
of applications of the idea of fermionic pairing formulated in the BCS theory
for superconductivity (Chap. 5) as well as for nuclear matter (Chap. 6). The
relationship between superfluidity (Chap. 7) and superconductivity on the
one hand, and collective excitations of the nuclei on the other, is put into
perspective. The quantum-electromagnetic field serves as a model for other
quantized matter fields in Chap. 8. The concept of gauge theory is introduced
and the close analogy between the Higgs mechanism and the Meissner effect
displayed. The method of Feynman graphs is explained in Chaps. 9 and 10,
stressing again the existence of a common language for condensed matter and
field theory. We essentially give the physical interpretation of diagrams wi-
thout performing the corresponding more technical quantitative calculations.
The analysis is restricted to ground-state properties: non-zero temperature
Green functions and the alternative functional integration viewpoint are not
considered.

The book is not aimed at the specialist in any of the addressed topics. In
fact, no chapter is intended to provide the up-to-date knowledge necessary
for an immediate fight on the battlefront of research. We refer in particular to
the present state of relativistic quantum field theory since, without mentio-
ning electroweak theory and chromodynamics, no presentation of the Lorentz
group or of the Dirac equation can be found here. From the viewpoint of con-
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densed matter, high-T is only briefly touched, mesoscopic physics and highly
correlated fermions are not discussed. To the prospective particle physicist,
the book can merely give a complementary education on the use of similar
techniques in condensed-matter physics. Conversely, physicists belonging to
the latter discipline, although they may be aware of the importance of field
theory for particle physics, should learn about fundamental ideas underlying
both domains. We therefore hope that our readers will discover a certain
unity of thinking among different domains of physics. In this case, this book
will not have been written in vain.

This book was written at the instigation of the Troisitme Cycle de la
Physique en Suisse Romande, and in particular of J.-J. Loeffel. We are grate-
ful to the many colleagues who provided useful suggestions or enlightenment
on various points, namely to the late P. Huguenin and to B. Jancovici, D.
Pavuna, J.-P. Perroud and G. Wanders. V. Savona helped with the elabo-
ration of the exercises at the end of each chapter. We thank R. Fernandez
for encouraging us to translate the book. S. Goldfarb translated and typed
the whole text, including the numerous equations; D. Watson helped us to
formulate additional material; L. Klinger and L. Trento drew the figures; our
thanks go to all these people for their contributions. Finally we are indebted
to the Institute of Condensed-Matter Physics and the Physics Section of the
University of Lausanne, as well as to the Physics Department of the Swiss
Federal Institute of Technology, Lausanne, for financial support.

August 2001 Philippe A. Martin
Francois Rothen
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Chapter 1 offers an incomplete summary of quantum mechanics and of classi-
cal field theory. By consequence, it recalls notions which are useful, but which
are generally part of an undergraduate repertoire. It is left to the reader to
determine the necessity for a thorough study of its contents.






1. Classical Fields
and Their Associated Particles

1.1 Introduction

Introductory quantum physics texts often begin with a historical review. A
typical starting point is the analysis of the black-body radiation spectrum,
conducted in 1900 by Max Planck and traditionally considered the birth of
quantum physics. This is a natural choice, as it is on this occasion that Planck
first introduced his constant h.

Such an historical approach, however, may lead to serious conceptual
difficulties and does not necessarily develop a clear pedagogical logic. The
black-body radiation problem immediately introduces a large number of par-
ticles, photons, and its analysis requires a good understanding of statistical
physics, as well as quantum-field theory. Moreover, the photon, introduced by
Einstein in 1905, obeys non-trivial Bose statistics. A more intuitive approach
would be to first examine the problem of a single quantum particle before mo-
ving on to more complex systems. History, however, chose the opposite and
the model of the hydrogen atom created by N. Bohr, the first single-particle
problem explicitly involving the Planck constant, did not appear until 1913.

This fact reveals a profound reality: there exists no quantum system that
is strictly a single-particle problem. In other words, all problems involving a
single particle (or a fixed number of particles) result from an approximation
which is in general valid only if the energy of the system is weak.

Nevertheless, the formalism of quantum physics is equally well suited for
single body problems as for analyses involving a large number of particles. Its
methods apply to the problem of a charged particle in a Coulomb potential,
for example, just as well as to the analysis of a collection of photons in a
reflecting cavity, or the dynamics of nucleons in a nucleus or of electrons
in a solid. However, although the passage from classical physics to quantum
physics is well known for the case of a massive particle such as an electron, its
generalization to electromagnetic radiation or to the vibrations of a crystal
lattice is not so evident. Difficulties arise with the introduction of the wave
particle duality as it is expressed for the electron, the photon or the phonon.

The discovery of the electron is commonly attributed to J.-J. Thompson
(1897). He recognized that, under the influence of magnetic fields, “cathode
rays” behave like jets of particles, with their charge-to-mass ratios remaining
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constant. Millikan later determined the charge of these particles. So, classi-
cally, one could then think of the electron as a particle characterized by its
mass and kinematical properties. In 1923, however, an hypothesis of de Bro-
glie attributed a wavelength to the electron and in 1926, Schrédinger gave his
name to the famous equation which describes its wave-like character. This
new quantum description, illustrated by the wave-particle duality, motivated
the association of a wavefunction to the electron obeying Schrodinger’s equa-
tion of motion. Thus the particle aspect of the electron was imposed before
its wave aspect.

In the case of radiation, history followed the reverse path for reasons which
were not accidental. Planck and Einstein associated the electromagnetic field
with a quantum particle. The famous Planck relation AE = hv = hw was
introduced in 1900 to account for the black body spectrum. In Planck’s mind,
AF represented a minimal exchange of energy between radiation and matter.
But in 1905 Einstein interpreted hv as the energy of a constituent particle of
radiation, the photon. Hence electromagnetic radiation, whose wave proper-
ties had been recognized since the work of Young, Fresnel, Fizeau, Kirchhoff
and Maxwell, simultaneously acquired the properties of a particle. It should
be noted that, while Newton did indeed consider radiation as a flux of partic-
les, he was acting on an hypothesis (one would call it a model today) which
was not based on any experimental results. So, in this case, the wave aspect
of radiation appears to have preceded its particle aspect.

Another fundamental difference between the electron and the photon is
that the latter has zero mass. For non-relativistic massive particles, the pas-
sage to quantum theory is achieved by applying the correspondence principle
to the Hamiltonian mechanics. Consider the case of an atom in a situation
where the kinetic energy is small compared to the rest energy of the partic-
les and small compared to the binding nuclear and ionization energies: the
nucleus remains stable and the number of electrons does not change. Even if
it is necessary to introduce spin and the Pauli exclusion principle, the par-
ticle composition of the atom (nucleons and electrons) remains unchanged;
the passage to quantum mechanics via the correspondence principle affects
the dynamics without changing either the number or the nature of the con-
stituent particles of the atom.

For a relativistic particle of zero mass, such as the photon, the transition
to quantum mechanics is less direct. Under the form of radiation confined to
the interior of a cavity, an electromagnetic field is continuously absorbed or
reflected by the walls of the vessel. The number of photons is not in general
a constant of motion. In other words, the interaction of a photon with other
particles cannot be represented by a potential energy. In relativistic physics,
interactions are written in terms of exchanges of particles and collisions. The
photon thus does not have a classical counterpart and the passage to the
quantum description cannot be made by following the same path as in the
case of an electron or an atom.



