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The central purpose of this book is to illustrate the premiss that theoretical
analysis of the kinetics of biological processes can give valuable information
concerning the underlying mechanisms that are responsible for these
processes.

Topics covered range from cooperativity in protein binding and enzyme
action, through receptor—effector coupling, to theories of biochemical
oscillations in yeast and slime mold, of liver regeneration, and of neuro-
transmitter release. Theories are always closely coupled to experiment.

The material of this book originally appeared as part of the volume
Mathematical models in molecular and cellular biology (edited by Lee A.
Segel). However, each chapter has been revised and updated.
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PREFACE

The central purpose of this book is to illustrate the premiss that examination
of the kinetics (time course) of biological processes can give valuable
information concerning the underlying mechanisms that are responsible for
these processes. To extract this information it is usually necessary to
construct a mathematical model that embodies hypothesized mechanisms.
Solution of the resulting equations shows whether the hypotheses are
consistent with the data.

Considerable material concerns steady-state solutions. These can be
regarded as the limiting behavior, in many instances, of the kinetic
equations.

On the molecular level, the discourse ranges from fairly classical analyses
of cooperativity in protein binding and enzyme action, through studies of
enzyme induction and receptor—effector coupling, to theories for biochemi-
cal oscillations in yeast and slime mold. Models for the triggering of
secretion in slime mold and in nerve cells, and for liver regeneration, are at
the intersection of molecular biology, cellular biology and physiology. In
addition, an introduction to the explosively growing theoretical topic of
chaos concludes with references that chronicle tentative attempts to apply
chaos theory in physiology (cardiac dynamics and immunology).

The material of this book originally appeared as part of Mathematical
models in molecular and cellular biology (Lee A. Segel, ed., Cambridge:
Cambridge University Press, 1980), which is now out of print. Each
contribution has been revised and updated. (Unfortunately, Sol Rubinow
has passed away. His contribution appears with permission of his widow,
Shirley Rubinow, and has been updated by Lee A. Segel.)

The mathematical requisite for most of the material is a good command of
basic calculus. A brief summary of the required mathematical ideas can be
found in the Appendices of ‘MDP’, Modelling dynamic phenomena in
molecular and cellular biology by Lee A. Segel (Cambridge: Cambridge
University Press, 1984). Indeed, one of the uses to which the present book
might be put is as a supplement to MDP, or to other texts in theoretical
biology. There is substantial overlap with MDP in only one topic, cAMP
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X Preface

secretion in slime mold. However, the coverage of this topic in the present
volume — although perhaps less detailed mathematically — is more compre-
hensive and up-to-date.

It is hoped that this volume will be of interest to students and researchers
alike, in both biology and applied mathematics. Readers should find a
number of interesting case studies that show how mathematical modeling
can illuminate important areas of modern biology.
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1

Fundamental concepts in biochemical reaction
theory

Law of mass action

Consider a reaction in which a chemical A of concentration A
combines reversibly with a chemical B of concentration B to yield complex,
C, of concentration C. This reaction is symbolized by

A+B k*=zc (1)
The forward and backward rate constants k., and k_, are the propor-
tionality factors in the law of mass action that is assumed to describe the
process of the reaction. According to this law, the rate at which the species A
reacts to form C is proportional to the mass of A, or equivalently, to the
number of molecules of A available for reaction. In mathematical terms, the
law takes the form of the following differential equations for the concen-
trations A, B, and C, at time ¢;

dA/dt = —k,,AB + k_,C,  dBldt=—k, AB+k_,C, (2a,b)
dC/dt = k. AB — k_,C. 2c)

In (2a), A is supposed to decrease at a rate jointly proportional to the
concentrations of A and B. The idea behind this is again the law of mass
action: doubling the concentrations of either A or B will double the rate of
collision between these two molecules and hence will double the rate of
‘successful’ collisions that lead to the formation of C. Such an assumption is
plausible as long as the concentrations are not too large. The break-up of an
individual C molecule into its constituents is held to occur with a constant
probability per unit time.

The phenomenological law of mass action can, in principle, be derived
from statistical mechanics, or on a deeper level from quantum mechanics,
but this law can be regarded as being well established because of experimen-
tal information on a wide variety of theories in the biological, chemical and
physical sciences that assume it.
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Enzyme—substrate complex system

Enzymes are large molecules that speed up the conversion of a
chemical to an altered form. According to the theory of enzymatic reactions
of Michaelis & Menten (1913), the enzyme accomplishes this in two steps.
First the enzyme (concentration E) reacts reversibly with the chemical,
called a substrate in this context, to form a complex (concentration C).
Secondly, the complex breaks apart into an altered substrate or product and
the original enzyme. This last reaction is often assumed to be irreversible, in
which case one writes

E+sz:*='z *a, g4 p.

=]

The law of mass action for the concentrations E(t), S(¢), C(¢), and S(¢) takes
the form

dE/dt = —k,,ES + k_,C + k,,C, (3a)
dS/dt = —k,,ES + k_,C, (3b)
dC/dt = k,,ES — k_,C — k,,C, (3¢)
dPldt = k,,C. (3d)

The above system of differential equations representing the enzymatic
conversion of substrates to product was first put forward by Briggs &
Haldane (1925). The equation must be supplemented by initial conditions
that describe the system at some reference time. This time is conveniently
designated ¢ = 0. The standard initial conditions, which conform to the usual
investigation of enzymatically controlled reactions, prescribe starting con-
centrations of enzyme and substrate, and assume that complex and product
have had no opportunity to form:

E(0) = E,, S(0) = Sy, C(0) =0, P(0) = 0. “
Addition of (3a) and (3¢) yields
d(E + C)/dt = 0. ()

Consequently E + C must be a constant, reflecting the fact that at any time ¢
all enzyme molecules are either in their original form or bound in a complex.
Using the initial conditions, the constant can be determined, so that we can
write the conservation equation

E(t) + C(¥) = E,. (6a)

This equation may be used to eliminate E from (3b) and (3c), leaving two
equations for the two unknown functions S(¢) and C(¢):
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dS/de = k+1E()S + C(k+ls + k_l), (6b)
dCIdt = k4 EoS — ks C(S + K., (6¢)
K= (k_y + ki) kyy. (64)

Pseudo-steady state: Michaelis-Menten equation

In laboratory experiments, it is typically the case that, at the start,
many substrate molecules are present for each enzyme molecule. Under
these circumstances one expects that after an initial short transient period
there will be a balance between the formation of complex by the union of
enzyme and substrate and the breaking apart of complex (either to enzyme
and substrate, or to enzyme and product). Because there are so many
substrate molecules, this balance will be achieved before there is perceptible
transformation of substrate into product. One anticipates, therefore, that
calculation of product formation can be carried out under the assumption
that dC/dt = 0, or, from (3¢),

korES = (k_y + ky2)C. )

This equation is said to result from a quasi- or pseudo-steady state hypoth-
esis. If any quantity no longer changes with time it is said to be in a steady
state. We add ‘pseudo’ or ‘quasi’ to the description of (7) as a steady state,
since although C is fully adjusted to the instantaneous values of E and S,
those values are changing slowly with time.

Upon substitution of (6a) and (7) into (3b), we obtain the following
equation for S:

dS/dt = —k,EoS/(K,, + S). ®
The solution of (8) (by the method of separation of variables) subject to the

initial condition S(0) = Sy, is

S+k—iﬂ—+—21n£=so—k+2E0t.
k.1 So

Of particular interest is the velocity of reaction V(¢) defined as the rate of

appearance of product. In view of the steady state hypothesis, we have from
(6a), (7) and (3d) that

V(¢) = dP/dt = k,,C = |dS/dt|. )

Biochemists are usually interested in V(¢) at the beginning of the reaction.
From (8) we can write for this initial velocity V, = V(0),
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VSo
Vo= ——m—, 10
"7 K, +S, (102)
where
V= k+2Eo. (10b)

Equation (10a) is called the Michaelis-Menten equation. Its graph starts
from the origin, for the absence of substrate implies the absence of reaction,
and approaches the asymptote V, = V as S, becomes larger and larger (see
Figure 1.1). Thus, when Sy is large compared to K,,, and V,, = V, there is an
abundance of substrate and the ‘chemical factory’ is working as fast as
possible. In such cases the system is said to be saturated. Because the
constant V'is the maximum velocity that the reaction can attain, the term ‘V-
max’ is used to describe it. (The term Langmuir isotherm is also associated
with (10a), which is said to have the form of a rectangular hyperbola.)

The biochemical determination of the Michaelis constant K, follows from
the observation that when Sy = K,,, then V=4V, Thus K,, gives the
concentration at which the reaction attains its half-maximal value. If this
concentration is relatively low, then the reaction is said to be highly specific.
A relatively low K,,, means a relatively large k. ; and this in turn means that
an enzyme-substrate collision is relatively likely to result in the formation of

v/2
|
|
]
|
]
I
|
]
|
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Figure 1.1. Graphs of the Michaelis-Menten equation (10a) in two
situations with the same maximum velocity V. The reaction represented

by curve (1) is more specific than that of curve (2) because the Michaelis
constant for it is smaller:

KV <k®.
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product, i.e. that the enzyme is specifically adapted to act on the particular
substrate.

Biochemists frequently rearrange the Michaelis-Menten equation (10a)
into the Lineweaver—Burk or double-reciprocal form

11 (&1, -
Vo V \V/S

The graph 1/V, versus 1/S, is thus a straight line, which simplifies the
problem of fitting the theory to data. Then 1/V and —1/K,, can be found at
once as the intersection of this line with the vertical and horizontal axes,
respectively (Figure 1.2).

Note from (10b) that V depends on the product of the initial enzyme
concentration Ej and the product formation rate constant k. ;. This reflects
the fact that at high substrate concentrations the speed of reaction depends
only on how many reaction units there are, and on how fast they can
transform complex into product. Under such circumstances one says that the
enzyme is the rate-limiting chemical and the complex—product conversion is
the rate-limiting step in the conversion of substrate to product.

The back reaction for the conversion of complex to product can also be
included in the theory. Further, Haldane (1930) has indicated that the
reaction of product and substrate should be viewed symmetrically so that the
complete set of reactions presumed to take place is represented as

S+E25CabC &5 P+ E, (12)
P k', k_»
where C is an S—E complex, and C' is a P-E complex. The analysis of this
reaction scheme does not alter the form of the Michaelis-Menten equation
(10a), although the meanings of V and K, in terms of fundamental rate
constants are more complicated than indicated by (10b) and (6d).

VA

~1/K 1/8,

Figure 1.2. The Lineweaver-Burk plot, from which V and K,, can be
readily determined. (The dashed part of the line corresponds to
‘unphysical’ negative substrate concentrations.)
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The assumption of a pseudo-steady state can simplify a wide variety of
kinetic problems. The most elementary application of this assumption yields
the Michaelis-Menten equation (10a) that is a keystone of theoretical
biochemistry. For both of these reasons it is worth carefully working out the
conditions under which the pseudo-steady state assumption (7) is expected
to be valid.

The key concept here is that of ‘time scale’, the order of magnitude of time
that characterizes the duration of a process or subprocess. For example,
what is the time scale of the fast transient process during which the complex
concentration changes from its initial value of zero to a pseudo-state
condition? Does it take microseconds, milliseconds or seconds? To estimate
the duration of this period we can make the approximation § = S, in (6¢).
This transforms (6¢) into a linear equation, with the solution

CH)=Cll—exp(-u)],  p=ki1(So+ Kn),

C = E()S()/(Km + SO) (13(1, b, C)
Thus the complex (fast) time scale is given by tc = u™1:
te = [k4+1(So + K)] 7 (14)

Now let us estimate the substrate (slow) time scale tg, namely how long it
takes for a significant change to occur in the substrate concentration. We
employ the characterization (Segel 1984, p. 56).

__total change in S after fast transient
s max |dS/dt| after fast transient

(15)

The numerator of (15) is approximately So. Assuming the validity of the
steady state assumption, we observe that the denominator is given by (8)
with S = S(). Thus ts == SQ/[k+2EOS0/(Km + S())], i.e.

tS = (Km + SQ)/k+2E0. (16)

One necessary criterion for the validity of the pseudo-steady state assump-
tion is that the ‘fast transient’ is indeed brief compared to the time during

which the substrate changes appreciably. This criterion is ¢ «< t5 or, from
(14) and (16)

- (1 + E:l) (1 + LSO—). (17)
Km + SO k+2 Km

A second criterion concerns the ‘initial’ condition S(0) =S, that is
imposed on (8). For this condition to be approximately valid there must be
only a negligible decrease in substrate concentration during the duration #¢
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of the brief transient. This decrease, which we denote by AS, is certainly less
than the product of the time duration ¢ and the initial (maximal) rate of
substrate consumption. ‘Initial’ in the previous sentence refers to the very
beginning of the experiment, so that the desired rate is obtained by setting
t = 0in (6b). This yields

AS| _ 1
So

ds

Eg
[r— . t
dt e

=— 18
- K, + So (18)

S

The requirement that |AS/S| be small compared to unity is thus expressed
by

ek, where ¢ = ——L. (19)
K, + So
If (19) holds then (17) holds. Thus & << 1 is a simple criterion for the validity
of the pseudo-steady state assumption.

For considerable further discussion along the above lines see Segel (1988)
and Segel & Slemrod (1989).
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