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METAL FORMING, THIRD EDITION

This book is designed to help the engineer understand the principles of metal
forming and analyze forming problems — both the mechanics of forming processes
and how the properties of metals affect the processes. The first third of the book
is devoted to fundamentals of mechanics and materials; the middle to analyses of
bulk forming processes such as drawing, extrusion, and rolling; and the last third
covers sheet forming processes. In this new third edition, an entire chapter has
been devoted to forming limit diagrams; another to various aspects of stamping,
including the use of tailor-welded blanks; and another to other sheet forming
operations, including hydroforming of tubes. Sheet testing is covered in a later
chapter. Coverage of sheet metal properties has been expanded to include new
materials and more on aluminum alloys. Interesting end-of-chapter notes and
references have been added throughout. More than 200 end-of-chapter problems
are also included.

William F. Hosford is a Professor Emeritus of Materials Science and Engineering
at the University of Michigan. Professor Hosford is the author of more than 80
technical articles and a number of books, including the leading selling Mechanics
of Crystals and Textured Polycrystals, Physical Metallurgy, Mechanical Behavior
of Materials, and Materials Science: An Intermediate Course.

Robert M. Caddell was a professor of Mechanical Engineering at the University
of Michigan, Ann Arbor.



Preface to Third Edition

My coauthor Robert Caddell died in 1990. I have greatly missed interacting with him.

The biggest changes from the second edition are an enlargement and reorganization
of the last third of the book, which deals with sheet metal forming. Changes have been
made to the chapters on bending, plastic anisotropy, and cup drawing. An entire chapter
has been devoted to forming limit diagrams. There is one chapter on various aspects
of stampings, including the use of tailor-welded blanks, and another on other sheet-
forming operations, including hydroforming of tubes. Sheet testing is covered in a
separate chapter. The chapter on sheet metal properties has been expanded to include
newer materials and more depth on aluminum alloys.

In addition, some changes have been made to the chapter on strain-rate sensitivity.
A treatment of friction and lubrication has been added. A short treatment of swaging
has been added. End-of-chapter notes have been added for interest and additional
end-of-chapter references have been added.

No attempt has been made in this book to introduce numerical methods such as
finite element analyses. The book Meral Forming Analysis by R. H. Wagoner and J. L.
Chenot (Cambridge University Press, 2001) covers the latest numerical techniques.
We feel that one should have a thorough understanding of a process before attempting
numerical techniques. It is vital to understand what constitutive relations are imbedded
in a program before using it. For example, the use of Hill’s 1948 anisotropic yield
criterion can lead to significant errors.

Joining techniques such as laser welding and friction welding are not covered.

I wish to acknowledge the membership in the North American Deep Drawing
Group from which I have learned much about sheet metal forming. Particular thanks
are given to Alejandro Graf of ALCAN, Robert Wagoner of the Ohio State University,
John Duncan of the University of Auckland, Thomas Stoughton and David Meuleman
of General Motors, and Edmund Herman of Creative Concepts.
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1 Stress and Strain

An understanding of stress and strain is essential for analyzing metal forming oper-
ations. Often the words stress and strain are used synonymously by the nonscientific
public. In engineering, however, stress is the intensity of force and strain is a measure
of the amount of deformation.

1.1 STRESS
Stress is defined as the intensity of force, F', at a point.
o =0F/dA as 04 — 0, (1.1)

where A is the area on which the force acts.
If the stress is the same everywhere,

o= F/A. (1.2)

There are nine components of stress as shown in Figure 1.1. A normal stress component
is one in which the force is acting normal to the plane. It may be tensile or compressive.
A shear stress component is one in which the force acts parallel to the plane.

Stress components are defined with two subscripts. The first denotes the normal
to the plane on which the force acts and the second is the direction of the force.* For
example, oy, is a tensile stress in the x-direction. A shear stress acting on the x-plane
in the y-direction is denoted oy,.

Repeated subscripts (e.g., 0y, 0,,, 0..) indicate normal stresses. They are tensile
if both subscripts are positive or both are negative. If one is positive and the other
is negative, they are compressive. Mixed subscripts (e.g., 0.y, Oxy, 0y;) denote shear
stresses. A state of stress in tensor notation is expressed as

Oxx Oyx Oz
Oij = |9xy Oyy Oz, (1.3)

Oxz Oyz Oz

* The use of the opposite convention should cause no problem because o;; = o;.
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Z Oz
[ |
);O'zy
Ozx
Oyz
Oxz 1.1. Nine components of stress acting on an
Oyy infinitesimal element.
(¢} Oyx
Xy
Oxx

where i and j are iterated over x, y, and z. Except where tensor notation is required, it
is simpler to use a single subscript for a normal stress and denote a shear stress by .
For example, o, = 0y, and 7, = 0,.

1.2 STRESS TRANSFORMATION

Stress components expressed along one set of axes may be expressed along any other
set of axes. Consider resolving the stress component o', = F,/4,, onto the x’ and )’ axes
as shown in Figure 1.2.

The force £ in the )’ direction is F) = F, cos 6 and the area normal to y’ is
Ay = A,/ cosb, so

oy = Fy/Ay = F,c088/(4,/cosf) = o, cos’ 6. (1.4a)
Similarly
Ty = Fy /Ay = F,sin0/(A4,/ cos0) = 0, cos 0 sin6. (1.4b)
Note that transformation of stresses requires two sine and/or cosine terms.

Pairs of shear stresses with the same subscripts in reverse order are always equal
(e.g., Ti; = ;). This is illustrated in Figure 1.3 by a simple moment balance on an

1.2. The stresses acting on a plane, A’, under a
normal stress, oy.




1.2. STRESS TRANSFORMATION

1.3. Unless 1, = 1%, there would not be a
moment balance.

Txy

infinitesimal element. Unless 7;; = 7;, there would be an infinite rotational accelera-
tion. Therefore

'L',‘j:l"/','. (15)

The general equation for transforming the stresses from one set of axes (e.g., n, m, p)
to another set of axes (e.g., i, j, k) 1s

3 3
Oij = Zzeimejnamn' (1.6)

n=1 m=1
Here, the term £;,, is the cosine of the angle between the i and m axes and the term ¢,
is the cosine of the angle between the j and » axes. This is often written as

O','j = Zimgjno'mnv (17)

with the summation implied. Consider transforming stresses from the x, y, z axis system
to the x’, /, Z system shown in Figure 1.4.
Using equation 1.6,
Oxrxt = LyixloxOxx + Lol Oxy + Ly lyr2 0y,
t+ Loyl Oy + Loplyy Oy, + £y £y0y
H ol 0oy + Lizliy0yr + Lyzy20s; (1.8a)

and

Gx’y’ = Ex’xgy’xo’xx + Ex/xgy’yo—xy + Zx’xgy’zo'xz
FluylyxOyx + Lxiylyy0yy + Loyly:0y;
FLluzlyn 0oy + Lyl 0, + Uizl 02, (1.8b)

1.4. Two orthogonal coordinate systems.
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These can be simplified to
Ov = 03,00 + 2,0, + €20, + 200, 0e: Ty + 2000 Ty + 200, ley Ty (1.92)
and

Tx’y’ = Ex’xey’xox -+ Ex/ygy’yo'y + gx’zgy’zo—z + (Ex’ygy’z + ex/zgy’y)fyz
+ (Ex’zzy’x + ex’xgy’z)rzx + (zx’xzy’y + Zx’yey’x)":)cy- (19b)

1.3 PRINCIPAL STRESSES

It is always possible to find a set of axes along which the shear stress terms vanish. In
this case 01, 02, and o3 are called the principal stresses. The magnitudes of the principal
stresses, oy, are the roots of

oy — Lo} — Lo, — I3 =0, (1.10)

p

where I, I, and &5 are called the invariants of the stress tensor. They are

I = oy + Oyy + 022,
2 2 2
L = 0y, T 0. +0;, = 0,y0:; — 0;,0xx — 0,0y, and (1.1
2 2 5
L = 0y.0y,0,, + 20y,0;50xy — Oxx0,, = 0yy0, — 0;;0;.
The first invariant /; = —p/3 where p is the pressure. [,, I,, and I; are independent of
the orientation of the axes. Expressed in terms of the principal stresses, they are
Iy =01+0y403,
12 = —0203 — 0301 — 0107, and (112)

13 = 010,03.

EXAMPLE 1.1: Consider a stress state with o, = 70 MPa, oy =35MPa, 1, =
20, 0; = 1;x = 1,; = 0. Find the principal stresses using equations 1.10 and 1.11.

SOLUTION: Using equations 1.11, ; = 105 MPa, I, = —2050 MPa, I; = 0. From
equation 1.10, Up3 — 1050p2 + 20500, + 0 = 0, so

oy — 1050, + 2,050 = 0.

The principal stresses are the roots o, = 79.1 MPa, 0, =259MPa,and 03 = 0, = 0.

EXAMPLE 1.2: Repeat Example 1.1 with /; = 170,700.

SOLUTION: The principal stresses are the roots of 05 — lOSorp2 +20500,4170,700=0.
Since one of the roots is 0, = o3 = —40, op + 40 = 0 can be factored out. This gives
crpz — 1050, 42050 = 0, so the other two principal stresses are o] = 79.1 MPa, o, =
25.9MPa. This shows that when o is one of the principal stresses, the other two
principal stresses are independent of o,.



1.4. MOHR’S CIRCLE EQUATIONS

1.4 MOHR’S CIRCLE EQUATIONS

In the special cases where two of the three shear stress terms vanish (e.g., 7,y = 7., =
0), the stress o, normal to the xy plane is a principal stress and the other two principal
stresses lie in the xy plane. This is illustrated in Figure 1.5.

For these conditions £, =¢,.=0,7,; =17, =0,£{, ={,, =cos¢, and
¢y, = —{,, = sin¢. Substituting these relations into equations 1.9 results in

Ty = €08 ¢ sin ¢p(—oy + 0,) + (cos*p — sin @)z,
Oy = (cos2 o)o, + (sin2 @)o, + 2(cos ¢ sin ¢)txy, and (1.13)
o, = (sin® ¢)o, + (cos? @)oo, + 2(cos P sin@)zy,.

These can be simplified with the trigonometric relations

sin2¢p = 2singcos¢ and cos2¢ = cos’¢p — sin’¢ to obtain

Ty = —sin2¢(0y — 0,)/2 + (cos 2¢) Ty, (1.14a)
oy = (0x +0y)/2 + cos 2¢(0, — 0,)/2 + T4, sin2¢, and (1.14b)
oy = (0x +0y)/2 — cos 2¢(0; — 0,)/2 + T4, sin2¢. (1.14¢)

If 7, is set to zero in equation 1.14a, ¢ becomes the angle 6 between the principal
axes and the x and y axes. Then

tan20 = ., /[(0x — 0,)/2]. (1.15)
The principal stresses, o1 and o7, are then the values of o, and o,

o12 = (0x +0,)/2 £ (1/2)[(0,x — 0,) c0820] + 7,, sin20 or

012 = (0 +0,)/2 % (1/)[(0 — 0,)* +472,]'"%. (1.16)
y %y
z
Tay
"
o —»Tyx
e ™ Oy H Oy
# Ty Tyx
oy —Y
0

1.5. Stress state for which the Mohr’s circle equations apply.



