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This book provides a solid foundation and an extensive study for an important
class of constrained optimization problems known as Mathematical Programs
with Equilibrium Constraints (MPEC), which are extensions of bilevel opti-
mization problems. The book begins with the description of many source
problems arising from engineering and economics that are amenable to treat-
ment by the MPEC methodology. Error bounds and parametric analysis are
the main tools to establish a theory of exact penalization, a set of MPEC con-
straint qualifications and the first- and second-order optimality conditions.
The book also describes several iterative algorithms such as a penalty-based
interior point algorithm, an implicit programming algorithm and a piecewise
sequential quadratic programming algorithm for MPECs. Results in the book
will have significant impacts in such disciplines as engineering design, eco-
nomics and game equilibria, and transportation planning, within all of which
MPEC has a central role to play in the modeling of many practical problems.
A useful resource for applied mathematicians in general, this book will
be a particularly valuable tool for operations researchers, transportation, in-
dustrial, and mechanical engineers, and mathematical programmers.
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Numbering System

The six chapters of the book are numbered from 1 to 6, the sections are
denoted by decimal numbers of the type 2.3 (meaning Section 3 of Chapter
2). Many sections are further divided into subsections, some subsections are
numbered, others are not. The numbered subsections are by decimal num-
bers following the section numbers; e.g., Subsection 1.3.1 means Chapter
1, Section 3, Subsection 1.

All definitions, results, and miscellaneous items are numbered consecu-
tively within each section in the form 1.3.5, 1.3.6, meaning Items 5 and 6
in Section 3 of Chapter 1. All items are also identified by their types (e.g.,
1.4.1 Proposition., 1.4.2 Remark.). When an item is referred to in the
text, it is called out as Algorithm 5.2.1, Theorem 4.1.7, etc.

Equations are numbered consecutively in each section by (1), (2), etc.
Any reference to an equation in the same section is by this number only,
whereas equations in another section are identified by chapter, section, and
equation. Thus (3.1.4) means Equation (4) in Section 1 of Chapter 3.
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Scalars
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x and y are perpendicular

the nonnegative part of a vector z

the nonpositive part of a vector z
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Preface

This monograph deals with a class of constrained optimization problems
which we call Mathematical Programs with Equilibrium Constraints, or
simply, MPECs. Briefly, an MPEC is an optimization problem in which the
essential constraints are defined by a parametric variational inequality or
complementarity system. The terminology, MPEC, is believed to have been
coined in [108]; the word “equilibrium” is adopted because the variational
inequality constraints of the MPEC typically model certain equilibrium
phenomena that arise from engineering and economic applications. The
class of MPECs is an extension of the class of bilevel programs, also known
as mathematical programs with optimization constraints, which was intro-
duced in the operations research literature in the early 1970s by Bracken
and McGill in a series of papers [34, 36, 37]. The MPEC is closely related
to the economic problem of Stackelberg game [265] the origin of which
predates the work of Bracken and McGill.

Our motivation for writing this monograph on MPEC stems from the
practical significance of this class of mathematical programs and the lack
of a solid basis for the treatment of these problems. Although there is
a substantial amount of previous research on special cases of MPEC, no
existing work provides such generality, depth, and rigor as the present
study. Our intention in this monograph is to establish a sound foundation
for MPEC that we hope will inspire further applications and research on
this important problem.

This monograph consists of six chapters. Chapter 1 defines the MPEC,
gives a brief description of several source problems, and presents various
equivalent formulations of the equilibrium constraints in MPEC; the chap-
ter concludes with some results of existence of optimal solutions. Chap-
ter 2 presents an extensive theory of exact penalty functions for MPEC,

xxi
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using the theory of error bounds for inequality systems. This chapter ends
with a brief discussion of how some exact penalty functions formulations
of MPEC can be employed to obtain first-order optimality conditions; the
latter topic and its extensions are treated in full in the next three chap-
ters. Specifically, Chapter 3 presents the fundamental first-order optimal-
ity (i.e., stationarity) conditions of MPEC; Chapter 4 verifies in detail the
hypotheses needed for the first-order conditions; Chapter 5 contains re-
sults on second-order optimality conditions. The sixth and last chapter
presents several algorithms for solving MPECs including an interior point
algorithm for MPECs with “monotone” inner problems, a conceptual iter-
ative descent algorithm based on an implicit programming approach, and
a locally superlinearly convergent Newton type (sequential quadratic pro-
gramming) method based on a piecewise programming approach. Some
preliminary computational results are reported. The monograph ends with
an extensive list of references.

Due to the intrinsic complexity of the MPEC, a comprehensive study
of this problem would inevitably require extensive tools from diverse dis-
ciplines. Besides a general knowledge of smooth (nonlinear) programming
and multivariate analysis, which we assume as prerequisites for this work,
such subjects as error bound theory for inequality systems, sensitivity and
stability theory for parametric variational inequalities, piecewise smooth
analysis, nonsmooth equations, the family of interior point methods, and
some basic iterative descent methods for nonlinear programs are all impor-
tant tools that will be used in this monograph. Since it is not possible for
us to review in detail all the background material and keep the monograph
within a reasonable length, we have chosen not to organize the prelimi-
nary results separately. Instead, we have included only the most useful
background results relevant to the topics of discussion.

Throughout the monograph, we have taken several different points of
view toward the MPEC, each of which is interesting by itself. Many results
obtained herein are new and have not appeared in the literature before.
For related approaches and results, we refer to [201, 214, 291, 292, 295]
see also the references in [5, 278].

)

The general MPEC is a highly nonconvex, nondifferentiable optimiza-
tion problem that encompasses certain combinatorial features in its con-
straints. As such, it is computationally very difficult to solve, especially
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if one wishes to compute a globally optimal solution. Partly due to this
pessimistic view, we have not attempted in this monograph to deal with
the issue of finding a globally optimal solution to the general problem itself
or to its special cases. The algorithms discussed in Chapter 6 are iterative
schemes for computing a stationary point of the MPEC (and under mild
conditions, a strict local minimum). We refer to [278] for references that
discuss some global optimization approaches to solving bilevel programs.

Due to the broad applications of MPEC, this monograph is of interest
to readers from diverse disciplines. In particular, operations researchers,
economists, design and systems engineers, and applied mathematicians will
likely find the subject matter interesting and challenging. We have written
the monograph with these individuals in mind.
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