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Preface

In chis book several streams of nonlinear control theory are merged and di-
rected towards a constructive solution of the feedback stabilization problem.
Analytic. geometric and asymptotic concepts are assembled as design tools for
a wide variety of nonlinear phenomena and structures. Differential-geometric
concepts reveal important structural properties of nonlinear systems, but al-
low no margin for modeling errors. To overcome this deficiency, we combine
them with analytic concepts of passivity, optimality and Lyapunov stability.
In this way geometry serves as a guide for construction of design procedures.
while analysis provides robustness tools which geometry lacks.

Our main tool is passivity. As a common thread. it connects all the chapters
of the book. Passivity properties are induced by feedback passivation designs.
Until recently, these designs were restricted to weakly minimum phase svstems
with relative degree one. Our recursive designs remove these restrictions. They
are applicable to wider classes of nonlinear systems characterized by feedback.
feecforward, and interlaced structures.

After the introductory chapter. the presentation is organized in two major
parts. The basic nonlinear system concepts - passivity. optimality, and stabil-
ity margins - are presented in Chapters 2 and 3 in a novel way as design tools.
Most of the new results appear in Chapters 4. 3. and 6. For cascade systems.
and then. recursively, for larger classes of nonlinear systems. we construct de-
sign procedures which result in feedback systems with optimality properties
and stability margins.

The book differs from other books on nonlinear control. It is more design-
oriented than the differential-geometric texts by Isidori [43] and Nijmeijer and
Van der Schaft [84]. It complements the books by Krstié¢. Kanellakopoulos
and Rokotovi¢ [61] and Freeman and Kokotovié [26]. by broadening the class
ot systems and design toois. The book is written for an audience of graduate
stidents. control engineers, and applied mathematicians interested in control
“heorv. It is self-contained and accessible with a basic knowledge of control

f=ni

“heorv as in Anderson and Moore (1], and nonlinear svstems as in Ixhalil {361,
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For clarity. most of the concepts are introduced through and expiained hv
examples. Design applications are illustrated on several phyvsical models of
pracrical interest.

The book can be used for a first level graduate course on noniinear control.
or as a collateral reading for a broader control theory course. Chaprers 2. 3.
and 4 are suitabie for a first course on noniinear control. while Chaprters 3
and 6 can be incorporated in a more advanced course on nonlinear feedback

design.

The book is a result of the postdoctoral research by the first two authors
with the third author at the Center for Control Engineering and Computation.
University of California. Santa Barbara. In the cooperative atmosphere of
the Center, we have been inspired by. and received help from. manyv of our
colleagues. The strongest influence on the content of the book came from
Randy Freeman and his ideas on inverse optimality. We are also thankful to
Dirk Aeyels, Mohammed Dahleh. Miroslav Krsti¢, Zigang Pan, Laurent Praly
and Andrew Teel who helped us with criticism and advice on specific sections
of the book. Gang Tao generously helped us with the final preparation of
the manuscript. Equally generous were our graduate students Dan Fontaine
with expert execution of figures, Srinivasa Salapaka and Michael Larsen with
simulations. and Kenan Ezal with proofreading.

Our families contributed to this project by their support and endurance.
Ivana. Edith. Simon and Filip often saw their fathers absent or absent-minded.
Our wives, Natalie, Seka, and Anna unwaveringly carried the heaviest burden.
We thank them for their infinite stability margins.

The support for research that led to this book came from several sources.
Ford Motor Company supported us financially and encouraged one of its re-
searchers (MJ) to continue this project. Support was also received form BAEF
and FNRS, Belgium (RS). The main support for this research program (P}
are the grants NSF ECS-9203491 and AFOSR F49620-95-1-0409.

Rodolphe Sepulchre

Mrdjan Jankovié

Petar Kokotovi¢
Santa Barbara. California. August 1996
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Chapter 1

Introduction

Control theory has been extremely successful in dealing with linear time-
invariant models of dynamic systems. A blend of state space and frequency
domain methods has reached a level at which feedback control design is system-
atic. not only with disturbance-free models, but also in the presence of distur-
bances and modeling errors. There is an abundance of design methodologies
for linear models: root locus, Bode plors ™ "™ -optimal control, eigenstruc-
ture assignment, H-infinity, p-svnrh- .trix inequalities, etc. Each
of these methods can he - .ation, tracking, disturbance
attenuation and similar Lectives.

The situatir -~ . .aferent for nonlinear models. Although several
noulinear are beginning to emerge, none of them taken alone is
suffict sfactory feedback design. A question can be raised whether
a o1 methodology can encompass all nonlinear models of practical

.. and whether the goal of developing such a methodology should even
.¢ pursued. The large divessity of nonlinear phenomena suggests that. with a
single design approach most of the results would end up being unnecessarily
conservative. To deal with diverse nonlinear phenomena we need a comparable
diversity of design toolg and procedures. Their construction is the main topic
of this book. .

Once the “tools and procedures™ attitude is adopted. an immediate task
is to determine the areas of applicability of the available tools. and criticaily
yeyaluate their advantages and limitations. With an arsenal of tools one is
enéouraged to construct design procedures which exploit structural proper-
ties to avoid conservativeness. Geometric and analvtic concepts reveal these
properties and are the kev ingredients of every design procedure in this booi.

Analysis is suitable for the study of stability and robustness. but it often
disregards structure. On the other hand. geometric methods are helpful in
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determining structural properties. such as relative degree and zero dyvnamic:
but. taken alone. do not guarantee stability margins. which are among T
prerequisites for robustness. In the procedures developed in this book. the £—
ometry makes the analysis constructive. while the analvsis makes the geome:™
more robust.

Chapters 2 and 3 present the main geometric and analvtic tools needed i::

the design procedures in Chapters 4. 5. and 6. Design plocedurek in Chaprer -
are constructed for several rypes of cascades. and al;&serve as building blocz:
in the construction of recursive procedures in Chapters 5 and 6.

The main recursive procedures are backstepping and forwarding. Whil-
backstepping is known from [61]. forwarding is a procedura recently develop=:
by the authors [46. 95]. This is its first appearance in a book. An importaz:
feature of this procedure is that it endows the systems with certain optimaliiz-
properties and desirable stability margins.

In this chapter we give a brief preview of the main topics discussed in thiis
book. '

1.1  Passivity, Optimality, and Stability

1.1.1 From absolute stability to passivity

Modern theory of feedback systems was fermed some 50-G0 vears ago from tw.
separate traditions. The Nyquist-Bode frequency domain methods. developes:
for the needs of feedback amplifiers. became a tqol for servomechanism desig.
during the Second World War. In this tradition. feedback control was at.
outgrowth of linear network theory and was readily applicable only to linear
time-invariant models.

The second tradition is more classical and goes back to Poincaré and Lye-
punov. This tradition, subsegnently named the state-space approach. employ:
the tools of nonlinear mechanics, and addresses both linear and nonlineaﬂr mod-
els. The main design task is to achieve stability in the sense of Lyapunov e
feedback loops which contain significant nonlinearities, especially in the ac-
tuators. A seminal development in this direction was the absolute stabuity
problem of Lurie {70]. |

In its simplest form, the absolute stability problem deals with a feedbacx
loop consisting of a linear block in the forward path and a nonlinearity in the
feedback path. Figure 1.1. The nonlinearity is specified only to the extent thas
it belongs to a “sector”. or. in the multivariable case. to a ~cone”. In otiie:
words. the admissible nonlinearities are linearly bounded. One of the absoiuz=

“
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Figure 1.1: The absolute stability problem.

stability results is a Lyapunov function construction for this class of systems.
The stability property is “absolute” in the sense that it is preserved for any
nonlinearity in the sector. Hence. a “sector stability margin” is guaranteed.

During a period of several vears. the frequency domain methods and the ab-
solute stability analysis coexisted as two separate disciplines. Breakthroughs
by Popov in the late 1950's and early 1960’s dramatically changed the land-
scape of control theory. While Popov’s stability criterion [87] was of major
importance. even more important was his introduction of the concept of pus-
sivity as one of the fundamental feedback properties {88].

Until the work of Popov, passivity was a network theory concept dealing
with rationai transfer functions which can be realized with passive resistances.
capacitances and inductances. Such transfer functions are restricted to have
relative degree (excess of the number of poles over the number of zeros) not
larger than one. They are called positive real because their real parts are
positive for all frequencies. that is. their phase lags are always less than 90
degrees. A key feedback stability result from the 1960’s. which linked passivity
with the existence of a quadratic Lyapunov function for a linear system. is the
celebrated Kalman-Yakubovich-Popov (INY'P) lemma also called Positive Real
Lemma. It has spawned many significant extensions to nonlinear systems and
acdaprive control.

1.1.2 Passivity as a phase characteristic

The most important passivity result. and also one of the fundamental laws of
feeciback. states that a negative feedback loop consisting of two passive systems
is passive. This is illustrated in Figure 1.2. Under an additional detectability
condirion this feedback loop is aiso staole.

To appreciate the content of this brief statement. assume fast that the two

<
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Figure 1.2: The fundamental passivity result.

passive blocks in the feedback connection of Figure 1.2 are linear. Then their
transfer functions are positive real. thart is. with the phase lag not larger than
90 degrees. Hence. the phase lag over the entire feedback loop is not larger
than 180 degrees. By the Nvquist-Bode criterion. such a linear feedback loop -
is stable for all feedback- gains, that is. it possesses an “infinite gain margin”.

When the two blocks in the feedback loop are nonlinear. the concept of pas-
sivity can’be seen to extend the Nyquist-Bode 180 degree phase lag criterion
to nonlinear systems. For nonlinear svstems. passivity can be therefore inter-
preted as a “phase” property. a complement of the gain propertv characterized
by varicus small gain theorems such as those presented in [18].

In the early 1970°s, Willems [120] systematized passivity (and dissipativity)
concepts by introducing the notions of storage function S(x) and supply ruie
w(u,y), where r is the svstem state, u is the input, and y is the output. A
svstem is passive if it has a positive semidefinite storage function S{x) and a
bilinear supply rate w(u.y) = uTy. satisfving the inequality

S@(T) - S(0) < [ wlult).y(t)) at (111

for all ¥ and T > 0. Passivity, therefore, is the property that the increase
in storage S is not larger than the integral amount supplied. Restated in the
derivative form

S(z) < w(u,y) (1.1.2)
passivity is the property that the rate of increase of storage is not higher than
the supply rate. In other words, any storage increase in a passive svstem is due
solely to external sources. The relationship berween passivity and Lvapunov
stability can be established by employing the storage S(z) as a Lyapunov
function. We will make a constructive use of this relationship.

o
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1.1.3  Optimal control and stability margins

Another major development in the 1950's and 1960's was the birth of op-
rimal control twins: Dynamic Programming and Maximum Principle. An
optimality result crucial for feedback control was the solution of the optimal
linear-quadratic regulator (LQR) problem by Kalman [50] for linear systems
i = Ar+ Bu. The well known optimal control law has the form u = — BT Pz,
where z is the state. u is the control and P is the symumetric positive definite
solution of a matrix algebraic Riccati equation. The matrix P determines the
optimal value x7 P r of the cost functional. which. at the same time, is a Lya-
punov function establishing the asymptotic stability of the optimal feedback
system.

A remarkable connection between optimality and passivity, established by
Kalman {52], is that a linear system can be optimal only if it has a passivity
property with respect to the output y = BT Pz. Furthermore. optimal linear
svstems have infinite gain margin and phase margin of 60 degrees.

These optimality, passivity. and stability margin properties have been ex-
rended to nonlinear systems which are affine in control:

= f(zr)+gju (1.1.3)
A feedback control law u = A{r) which minimizes the cost functional
J =/0 (U(z) + u?)dt (1.1.4)

where [(z) is positive semidefinite and u is a scalar. is obtained by minimizing
the Hamiltonian function

D

H(xz.u) =(z) t—u"-!—%y;(f(a:) +g(x)u) (1.1.3)

If a differentiable oprimal value function V() exists. then the optimal control
law is in the “L,1 -form™:
. 1 19V

u=k(z)=—-=L,V(z) = —=—=—9g(z) L.
The oprimal value function V(z) also serves as a Lyapunov function which.
along with a detectability property, guarantees the asvmptotic stability of the
optimal feedback system. The connection with passivity was established by
Movlan [80] by showing that. as in the linear case. the optimal system has an
infinite gain margin thanks to its passivity property with respect to the output
y=LV ‘
. g



