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Preface

The purpose of this book is to provide an introduction to differential
equations and linear algebra that takes advantage of the interplay between
the two subjects. Linear and matrix algebra are useful tools for both compu-
tational and theoretical work in differential equations. This is particularly
true in the study of linear systems of differential equations. On the other
hand, differential equations provide examples and applications of many con-
cepts in linear algebra.

The level of the book is such that it is accessible to students who have
taken two or three terms of calculus. Applications have been presented from
a variety of fields. Proofs of several of the more difficult theorems have been
omitted, but most results have been proved. The theorems in the text, along
with the more challenging exercises, can be used to introduce the student to
mathematical rigor at an elementary level.

Most of the material on linear algebra is in Chapters II, III, and IV. Section
3.6 can be omitted without loss of continuity. Chapter IV (Characteristic
Values) can be omitted if the characteristic value method for solving systems
of differential equations in Chapter VI (Sections 6.4-6.7) is also omitted.
Chapter V can be taken up before Chapter IV if desired. A choice from the
applications can be made, depending on the interests of the students.

The second edition contains additional applications. These include popu-
lation growth, economic dynamics, the two-body problem, stochastic matrices,
and applications for linear systems of algebraic equations. Much of the
material on linear algebra has been rewritten. Fewer topics are presented
and the treatment of the remaining topics has been expanded with the inten-

ix



x Preface

tion of making the level more elementary. Specific changes include the
following. Systems of linear equations are solved by reducing them to row—
echelon form. The discussion of linear dependence has been simplified.
Additional exercises and examples have been inserted to illustrate basic ideas
such as subspaces, linear independence, orthogonal bases, and linear trans-
formations. Some of the more theoretical material has been dropped. Other
minor changes have been made where it was felt that the presentation could
be improved.

Answers to about half the computational problems are given at the end
of the book.
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I

Introduction
to Differential Equations

1.1 INTRODUCTION

An ordinary differential equation may be defined as an equation that in-
volves a single unknown function of a single variable and some finite number
of its derivatives. For example, a simple problem from calculus is that of
finding all functions f for which

f(x)=3x>-4x+5 (1.1)

for all x. Clearly a function f satisfies the condition (1.1) if and only if it is
of the form

f)=x*-2x*+5x+c,

where ¢ is an arbitrary number. A more difficult problem is that of finding
all functions g for which

g (x) +2[g(x)]*=3x*—4x +5. (1.2)

Another difficult problem is that of finding all functions y for which
(we use the abbreviation y for y(x))

2
_x) + 4y =sin x. (L.3)



2 Introduction to Differential Equations

In each of the problems (1.1), (1.2), and (1.3) we are asked to find all
functions that satisfy a certain condition, where the condition involves one
or more derivatives of the function. We can reformulate our definition of a
differential equation as follows. Let F be a function of n + 2 variables. Then
the equation

Fx, 9,9,y ...,y®]=0 (1.4)

is called an ordinary differential equation of order » for the unknown func-
tion y. The order of the equation is the order of the highest order derivative
that appears in the equation. Thus, Eqgs. (1.1) and (1.2) are first-order equa-
tions, while Eq. (1.3) is of second order.

A partial differential equation (as distinguished from an ordinary differen-
tial equation) is an equation that involves an unknown function of more than
one independent variable, together with partial derivatives of the function.
An example of a partial differential equation for an unknown function u(x, t)
of two variables is

*u _Ou
a—x—z- = —67 +u.
Almost all the differential equations that we shall consider will be ordinary.
By a solution of an ordinary differential equation of order #, we mean a
function that, on some interval,' possesses at least n derivatives and satisfies
the equation. For example, a solution of the equation

is given by the formula
y=e** -3, for all x,

because

di(ezx —3) — 2(e®* — 3) = 2e** — 2e¥* 4+ 6 =6
X

! We shall use the notations (a, b), [a, b], (a, b], [a, b), (a, ), [a. ), (— 0, a), (— ©,a],
(— o0, o) for intervals. Here (a, b) is the set of all real numbers x such that a < x < b, [a, b]
is the set of all real numbers x such that a < x < b, [a, b) is the set of all real numbers x such
that a < x < b, and so on.
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for all x. The set of all solutions of a differential equation is called the general
solution of the equation. For instance, the general solution of the equation

d
d—i=3x2—4x 1

consists of all functions that are of the form
et G 2 :
y=x"—-2x*+c, xin £,
where ¢ is an arbitrary constant and £ is an arbitrary interval. To solve a

differential equation is to find its general solution.
Let us now solve the second-order equation

d%y
Integrating, we find that

dy
E)—C=6x2+8x+cl,

where c, is an arbitrary constant. A second integration yields
y=2x3+4x2+c;x+c,

for the general solution. Here ¢, is a second arbitrary constant.
The general solution of the third-order equation

y" = 16e"%*
can be found by three successive integrations. We find easily that

V= -8 4,

y =4e* +cix + ¢y,

and

y=—2"2* 4+ 3c'\x* + c;x + ¢35,
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where ¢{, ¢, , and c; are arbitrary constants. If we replace the constant ¢{ in
the last formula by 2c,, it becomes

y=—=2e"4+cx?+cyx+c;5.

This last formula is slightly simpler in appearance. The two formulas describe
the same set of functions since the coefficient of x* is completely arbitrary in
both cases. Since ¢; = 2c,, we see that to any arbitrarily assigned value for
¢,, there corresponds a value for ¢; and vice versa.

If a formula can be found that describes the general solution of an nth-
order equation, it usually involves n arbitrary constants. We note that this
principle has been borne out in the last three examples, which admittedly are
rather simple. Actually it is possible to find a simple formula that describes
the general solution only for relatively few types of differential equations.
Several such classes of first-order equations are discussed in the following
three sections. In cases where it is not possible to find explicit formulas for
the solutions, it still may be possible to discover certain properties of the solu-
tions. For instance, it may be possible to show that a solution is bounded (or
unbounded), to find its limiting value as the independent variable becomes in-
finite, or to establish that it is a periodic function. Much advanced work in
differential equations is concerned with such matters.

Perhaps some reasons should now be given as to why we want to solve
differential equations. Briefly, many experimentally discovered laws of science
can be formulated as relations that involve not only magnitudes of quantities
but also rates of change (usually with respect to time) of these magnitudes.
Thus, the laws can be formulated as differential equations. A number of
examples of problems that give rise to differential equations are presented in
this book. Some applications will be described in Sections 1.5-1.9 after we
have learned how to solve several kinds of first-order equations.

We have seen that ordinary differential equations can be classified as to
order. We shall also categorize them in one more way. An equation of order n
is said to be a /inear equation if it is of the special form

a(X)y® + a;()y" D + -+ a, ()Y + a,(X)y = f(x),

where a, , a4, .. ., a, and fare given functions that are defined on an interval .#.
Thus the general nth-order equation (1.4) is linear if the function F is a first-
degree polynomial in y, y’, ..., y™. An equation that is not linear is said to
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be a nonlinear equation. For example, each of the equations

Y+ (cos x)y = €%,
xy" +y =x?,
xy” —e*y' + (sinx)y =0,
is linear, while each of the equations
y+yi=1,
y" + (cos x)yy’ = sin x,
y"—x(y)+y=0,
is nonlinear. Because linear equations possess special properties, they will be
treated in a separate chapter, Chapter 5.
In most applications that involve differential equations, the unknown func-
tion is required. not only to satisfy the differential equation but also to satisfy
certain other auxiliary conditions. These auxiliary conditions often specify

the values of the function and some of its derivatives at one or more points.
As an example, suppose we are asked to find a solution of the equation

dy
=L = 3x2
dx 3

that satisfies the auxiliary condition y = 1 when x =2, or
y(2) =1

Thus, we require the graph of our solution (which is called a solution curve
or integral curve) to pass through the point (2, 1) in the xy plane. The general
solution of the equation is

y=x+c,

where ¢ is an arbitrary constant. In order to find a specific solution that satis-
fies the initial condition, we set x = 2 and y = 1 in the last formula, finding
that 1 = 8 + ¢ or ¢ = —7. Thus, there is only one value of ¢ for which the con-
dition is satisfied. The equation possesses one and only one solution (defined
for all x) that satisfies the condition, namely,

y=x*-1.
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For an nth-order equation of the form
y® =G[x,y, ¥y, y"%,..., y"" ], (1.5)
auxiliary conditions of the type
Yxo) =ko, Y'(x0)=ki, y'(x0)=kzs..., Y Vxo)=k,_y, (1.6)

where the k; are given numbers, are common. We note that there are n con-
ditions for the nth-order equation. These conditions specify the values of the
unknown function and its first » — 1 derivatives at a single point x,. For a
first-order equation

y' =H(x,y),
we would have only one condition
Y(xo) = ko

specifying the value of the unknown function itself at x,. In the case of a
second-order equation

y'=K(x,),
we would have two conditions
)’(xo) = ko s .V'(xo) == kl-

A set of auxiliary conditions of the form (1.6) is called a set of initial
conditions for the Eq. (1.5). The equation (1.5) together with the conditions
(1.6) constitute an initial value problem. The reason for this terminology is
that in many applications the independent variable x represents time and the
conditions are specified at the instant x, at which some process begins.

In specifying the values of the first » — 1 derivatives of a solution of
Eq. (1.5) at x,, we have essentially specified the values of any higher deriva-
tives that might exist. The values of these higher derivatives can be found from
the differential equation itself. For example, let us consider the initial value
problem

y'=xt-y?
yn=2 y@=-1
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From the differential equation we see that
yH=1-8=-7.
By differentiating through in the differential equation, we find that
y” =2x — 3y?y’
and hence
y'M)=2-03)4(-1)=14.

The values of higher derivatives at x = 1 can be found by repeated differen-
tiation.

If a function can be expanded in a power series about a point x,, a know-
ledge of the values of the function and its derivatves at x, completely deter-
mines the function. This discussion suggests that the initial value problem
(1.5) and (1.6) can have but one solution if the function G is infinitely differ-
entiable with respect to all variables. Actually it can be shown that, under
rather mild restrictions on G, the initial value problem possesses a solution and
that it has only one solution. In most of the problems and examples of this
chapter, it is possible to actually find all the solutions of the differential equa-
tion at hand. In cases where this is impossible, it is comforting to know that
the problem being considered actually has a solution and that there is only
one solution. An initial value problem purporting to describe some physical
process would not be very valuable without these two properties.

Exercises for Section 1.1

1. Find the order of the differential equation and determine whether it is
linear or nonlinear.

(@ y =é€ ®) Yy +xy=sinx
© y+e=0 d y"+2y'+y=cosx
© Yy +xyy+y=2 ) y® +3(cosx)y” +y =0
(& »"=0 (h) yy"+y =0
2. Find the general solution of the differential equation.
@ y=2x-3 (b) ' =3x2sin x*
© V=755 @ =127 +4
(e) y" =sec’x ) y'=8"2*4¢

(8 y"'=24x-6 (h) y“ =32sin2x
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3.

10.

Find a solution of the differential equation that satisfies the specified
conditions.

@ y' =0, y@=-5

®) y=x, y2=9

© y=4x-3, y4)=3

d y=3x>—6x+1, y(—=2)=0

© »y'=0, y=1, y@=-1

) y"=97* y0=1, y@©0)=2

(&) y"'=cosx, ymn)=2, y'(m)=0

(h) y"=e% y0=-1, yO0=1, y'(0)=3

Show that a function is a solution of the equation y’ + ay = 0, where a
is a constant, if, and only if| it is a solution of the equation (¢*y)’' = 0.

Hence show that the general solution of the equation is described by
the formula y = ce™**, where c is an arbitrary constant.

Use the result of Exercise 4 to find the general solution of the given
differential equation.

(@ y+3y=0 (® y —-3y=0

(© 3y'—y=0 (d 3y'+2y=0

Verify that the differential equation has the given function as a solution.
(@ xy' +y=3x* y=x?% allx

(b) xy'+y=0, y=1/x, x>0.

(© y +2xy=0, y=exp(—x?), allx.

(d y"+4y=0, y=cos2x, allx.

() y'+y —2y=0, y=e %% allx

) 2x2y"+3xy'—y=0, y =\/;c, x> 0.

Verify that each of the functions y = e™* and y = e3* is a solution of

the equation y” —2y'—3y =0 on any interval. Then show that
c,e”* + ¢, €3* is a solution for every choice of the constants ¢; and ¢, .

Suppose that a function f is a solution of the initial value problem
y' =x*+ y%, y(1) = 2. Find f'(1), "(1), and £"(1).
If the function g is a solution of the initial value problem
Y +yy —x*=0,
-n=1 y(=n=2,
find g"(—1) and g"(—1).

Show that the problem y’ = 2x, y(0) = 0, y(1) = 100, has no solution.
Is this an initial value problem ?



