THE

PROGRAMMING
LANGUAGE

BrianVV.Kernighan e Dennis M.Ritchie

PRENTICE-HALL SOFTWARE SERIES

THE

C
PROGRAMMING
LANGUAGE

Brian W. Kernighan

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey

PRENTICE-HALL, INC., Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data

KERNIGHAN, BRIAN W.
The C programming language.

Includes index.

1. C(Computer program language) 1. RITCHIE,
DENNIS M, joint author. il. Title.
QAT6.73.C15K47 001.6'424 77-28983
ISBN 0-13-110163-3

The Publisher offers discounts on this book when ordered in bulk
quantities. For more information write:

Special Sales/College Marketing
Prentice-Hall, Inc.

College Technical and Reference Division
Englewood Cliffs, N.J. 07632

Copyright © 1978 by Bell Telephone Laboratories, Incorporated.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior written permission of the publisher. Print-
ed in the United States of America. Published simultaneously in Canada.

This book was set in Times Roman and Courier 12 by the authors, using a Graphic Sys-
tems phototypesetter driven by a PDP-11/70 running under the UNIX operating system.

UNIX is a Trademark of Bell Laboratories.

25 24 23 22 21

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

PREFACE

C is a general-purpose programming language which features economy
of expression, modern control flow and data structures, and a rich set of
operators. C is not a ‘“‘very high level” language, nor a ‘‘big’’ one, and is
not specialized to any particular area of application. But its absence of res-
trictions and its generality make it more convenient and effective for many
tasks than supposedly more powerful languages.

C was originally designed for and implemented on the UNIXt operating
system on the DEC PDP-11, by Dennis Ritchie. The operating system, the
C compiler, and essentially all UNIX applications programs (including all of
the software used to prepare this book) are written in C. Production com-
pilers also exist for several other machines, including the IBM System/370,
the Honeywell 6000, and the Interdata 8/32. C is not tied to any particular
hardware or system, however, and it is easy to write programs that will run
without change on any machine that supports C.

This book is meant to help the reader learn how to program in C. It
contains a tutorial introduction to get new users started as soon as possible,
separate chapters on each major feature, and a reference manual. Most of
the treatment is based on reading, writing and revising examples, rather
than on mere statements of rules. For the most part, the examples are com-
plete, real programs, rather than isolated fragments. All examples have
been tested directly from the text, which is in machine-readable form.
Besides showing how to make effective use of the language, we have also
tried where possible to illustrate useful algorithms and principles of good
style and sound design.

The book is not an introductory programming manual; it assumes some
familiarity with basic programming concepts like variables, assignment state-
ments, loops, and functions. Nonetheless, a novice programmer should be
able to read along and pick up the language, although access to a more

+ UNIX is a Trademark of Bell Laboratories. The UNIX operating system is
available under license from Western Electric, Greensboro, N. C.

ix

X THE C PROGRAMMING LANGUAGE

knowledgeable colleague will help.

In our experience, C has proven to be a pleasant, expressive, and versa-
tile language for a wide variety of programs. It is easy to learn, and it wears
well as one’s experience with it grows. We hope that this book will help you
to use it well.

The thoughtful criticisms and suggestions of many friends and col-
leagues have added greatly to this book and to our pleasure in writing it. In
particular, Mike Bianchi, Jim Blue, Stu Feldman, Doug Mcllroy, Bill
Roome, Bob Rosin, and Larry Rosler all read multiple versions with care.
We are also indebted to Al Aho, Steve Bourne, Dan Dvorak, Chuck Haley,
Debbie Haley, Marion Harris, Rick Holt, Steve Johnson, John Mashey, Bob
Mitze, Ralph Muha, Peter Nelson, Elliot Pinson, Bill Plauger, Jerry Spivack,
Ken Thompson, and Peter Weinberger for helpful comments at various
stages, and to Mike Lesk and Joe Ossanna for invaluable assistance with
typesetting.

Brian W. Kernighan

Dennis M. Ritchie

Preface
Chapter 0

Chapter 1

ek pmk jmd e pmh pemmb ek ek ed et
—— 0 00 ~1 O WL W N —

—0

Chapter 2

2.1
22
23
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
212

Introduction

- A Tutorial Introduction

Getting Started

Variables and Arithmetic
The For Statement
Symbolic Constants

A Collection of Useful Programs
Arrays

Functions

Arguments — Call by Value
Character Arrays

Scope;, External Variables
Summary

Types, Operators and Expressions

Variable Names

Data Types and Sizes

Constants

Declarations

Arithmetic Operators

Relational and Logical Operators
Type Conversions

Increment and Decrement Operators
Bitwise Logical Operators
Assignment Operators and Expressions
Conditional Expressions

Precedence and Order of Evaluation

v

CONTENTS

ix

11
12
13
20
22
24
25
28
31

33

33
33
34
36
37
38
39
42
44
46
47
48

vi THE C PROGRAMMING LANGUAGE

Chapter 3

3.1
3.2
3.3
3.4
35
3.6
3.7
3.8
39

Chapter 4

4.1
4.2
43
44
4.5
4.6
4.7
48
49
4.10
4.11

Chapter 5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
511
5.12

Chapter 6

6.1
6.2
6.3

Control Flow

Statements and Blocks
If-Else

Else-If

Switch

Loops — While and For
Loops — Do-while
Break

Continue

Goto’s and Labels

Functions and Program Structure

Basics

Functions Returning Non-Integers
More on Function Arguments
External Variables

Scope Rules

Static Variables

Register Variables

Block Structure

Initialization

Recursion

The C Preprocessor

Pointers and Arrays

Pointers and Addresses

Pointers and Function Arguments
Pointers and Arrays

Address Arithmetic

Character Pointers and Functions
Pointers are not Integers
Multi-Dimensional Arrays

Pointer Arrays; Pointers to Pointers
Initialization of Pointer Arrays

Pointers vs. Multi-dimensional Arrays

Command-line Arguments
Pointers to Functions

Structures

Basics
Structures and Functions
Arrays of Structures

51

51
51
53
54
56
59
61
62
62

65

65
68
71
72
76
80
81
81
82
84
86

89

89
91
93
96
99
102
103
105
109
110
110
114

119

119
121
123

6.4
6.5
6.6
6.7
6.8
6.9

Chapter 7

7.1
1.2
7.3
7.4
1.5
7.6
1.7
7.8
7.9

Chapter 8

8.1
8.2
8.3
8.4
8.5
8.6
8.7

Appendix A

WAL S W

11.
12.
13.
14.
18.

CONTENTS

Pointers to Structures
Self-referential Structures
Table Lookup

Fields

Unions

Typedef

Input and Output

Access to the Standard Library

Standard Input and Qutput — Getchar and Putchar
Formatted Qutput — Printf

Formatted Input — Scanf

In-memory Format Conversion

File Access

Error Handling — Stderr and Exit

Line Input and Output

Some Miscellaneous Functions

The UNIX System Interface

File Descriptors

Low Level I/0 — Read and Write

Open, Creat, Close, Unlink

Random Access — Seek and Lseek

Example — An Implementation of Fopen and Getc
Example — Listing Directories

Example — A Storage Allocator

C Reference Manual

Introduction

Lexical conventions
Syntax notation
What’s in a name?
Objects and lvalues
Conversions
Expressions
Declarations
Statements

External definitions
Scope rules
Compiler control lines
Implicit declarations
Types revisited
Constant expressions

vii

128
130
134
136
138
140

143

143
144
145
147
150
151
154
155
156

159

159
160
162
164
165
169
173

179

179
179
182
182
183
183
185
192
201
204
205
207
208
209
211

viii

Index

THE C PROGRAMMING LANGUAGE

16.
17.
18.

Portability considerations
Anachronisms
Syntax Summary

211
212
214

221

CHAPTER 0: INTRODUCTION

C is a general-purpose programming language. It has been closely asso-
ciated with the UNIX system, since it was developed on that system, and
since UNIX and its software are written in C. The language, however, is not
tied to any one operating system or machine; and although it has been called
a ‘“‘system programming language’’ because it is useful for writing operating
systems, it has been used equally well to write major numerical, text-
processing, and data-base programs,

C is a relatively ‘‘low level’’ language. This characterization is not
pejorative; it simply means that C deals with the same sort of objects that
most computers do, namely characters, numbers, and addresses. These may
be combined and moved about with the usual arithmetic and logical opera-
tors implemented by actual machines.

C provides no operations to deal directly with composite objects such as
character strings, sets, lists, or arrays considered as a whole. There is no
analog, for example, of the PL/I operations which manipulate an entire
array or string. The language does not define any storage allocation facility
other than static definition and the stack discipline provided by the local
variables of functions: there is no heap or garbage collection like that pro-
vided by Algol 68. Finally, C itself provides no input-output facilities: there
are no READ or WRITE statements, and no wired-in file access methods.
All of these higher-level mechanisms must be provided by explicitly-called
functions.

Similarly, C offers only straightforward, single-thread control flow con-
structions: tests, loops, grouping, and subprograms, but not multiprogram-
ming, parallel operations, synchronization, or coroutines.

Although the absence of some of these features may seem like a grave
deficiency (‘“You mean I have to call a function to compare two character
strings?”'), keeping the language down to modest dimensions has brought
real benefits. Since C is relatively small, it can be described in a small
space, and learned quickly. A compiler for C can be simple and compact.
Compilers are also easily written; using current technology, one can expect
to prepare a compiler for a new machine in a couple of months, and to find

1

2 THE C PROGRAMMING LANGUAGE CHAPTER 0

that 80 percent of the code of a new compiler is common with existing ones.
This provides a high degree of language mobility. Because the data types
and control structures provided by C-are supported directly by most existing
computers, the run-time library required to implement self-contained pro-
grams is tiny. On the PDP-11, for example, it contains only the routines to
do 32-bit multiplication and division and to perform the subroutine entry
and exit sequences. Of course, each implementation provides a comprehen-
sive, compatible library of functions to carry out [/O, string handling, and
storage allocation operations, but since they are called only explicitly, they
can be avoided if required; they can also be written portably in C itself.

Again because the language reflects the capabilities of current comput-
ers, C programs tend to be efficient enough that there is no compulsion to
write assembly language instead. The most obvious example of this is the
UNIX operating system itself, which is written almost entirely in C. Of
13000 lines of system code, only about 800 lines at the very lowest level are
in assembler. In addition, essentially all of UNIX applications software is
written in C; the vast majority of UNIX users (including one of the authors
of this book) do not even know the PDP-11 assembly language.

Although C matches the capabilities of many computers, it is indepen-
dent of any particular machine architecture, and so with a little care it is
easy to write ‘‘portable’” programs, that is, programs which can be run
without change on a variety of hardware. It is now routine in our environ-
ment that software developed on UNIX is transported to the local
Honeywell, IBM and Interdata systems. In fact, the C compilers and run-
time support on these four machines are much more compatible than the
supposedly ANSI standard versions of Fortran. The UNIX operating system
itself now runs on both the PDP-11 and the Interdata 8/32. Outside of pro-
grams which are necessarily somewhat machine-dependent like the compiler,
assembler, and debugger, the software written in C is identical on both
machines. Within the operating system itself, the 7000 lines of code outside
of the assembly language support and the 1/0 device handlers is about 95
percent identical.

For programmers familiar with other languages, it may prove helpful to
mention a few historical, technical, and philosophical aspects of C, for con-
trast and comparison.

Many of the most important ideas of C stem from the considerably
older, but still quite vital, language BCPL, developed by Martin Richards.
The influence of BCPL on C proceeded indirectly through the language B,
which was written by Ken Thompson in 1970 for the first UNIX system on
the PDP-7.

Although it shares several characteristic features with BCPL, C is in no
sense a dialect of it. BCPL and B are ‘“‘typeless’” languages: the only data
type is the machine word, and access to other kinds of objects is by special

CHAPTER 0 INTRODUCTION 3

operators or function calls. In C, the fundamental data objects are charac-
ters, integers of several sizes, and floating point numbers. In addition, there
is a hierarchy of derived data types created with pointers, arrays, structures,
unions, and functions.

C provides the fundamental flow-control constructions required for
well-structured programs: statement grouping; decision making (if); loop-
ing with the termination test at the top (while, for), or at the bottom
(do); and selecting one of a set of possible cases (switch). (All of these
were provided in BCPL as well, though with somewhat different syntax; that
language anticipated the vogue for ‘‘structured programming’ by several
years,)

C provides pointers and the ability to do address arithmetic. The argu-
ments to functions are passed by copying the value of the argument, and it
is impossible for the called function to change the actual argument in the
caller. When it is desired to achieve ‘‘call by reference,”’ a pointer may be
passed explicitly, and the function may change the object to which the
pointer points. Array names are passed as the location of the array origin,
so array arguments are effectively call by reference.

Any function may be called recursively, and its local variables are typi-
cally ‘“‘automatic,”” or created anew with each invocation. Function
definitions may not be nested but variables may be declared in a block-
structured fashion. The functions of a C program may be compiled
separately. Variables may be internal to a function, external but known only
within a single source file, or completely global. Internal variables may be
automatic or static. Automatic variables may be placed in registers for
increased efficiency, but the register declaration is only a hint to the com-
piler, and does not refer to specific machine registers.

C is not a strongly-typed language in the sense of Pascal or Algol 68. It
is relatively permissive about data conversion, although it will not automati-
cally convert data types with the wild abandon of PL/I. Existing compilers
provide no run-time checking of array subscripts, argument types, etc.

For those situations where strong type checking is desirable, a separate
version of the compiler is used. This program is called _lint, apparently
because it picks bits of fluff from one’s programs. /int does not generate
code, but instead applies a very strict check to as many aspects of a program
as can be verified at compile and load time. It detects type mismatches,
inconsistent argument usage, unused or apparently uninitialized variables,
potential portability difficulties, and the like. Programs which pass
unscathed through lint enjoy, with few exceptions, freedom from type errors
about as complete as do, for example, Algol 68 programs. We will mention
other /int capabilities as the occasion arises.

Finally, C, like any other language, has its blemishes. Some of the
operators have the wrong precedence; some parts of the syntax could be
better; there are several versions of the language extant, differing in minor

4 THE C PROGRAMMING LANGUAGE CHAPTER 0

ways. Nonetheless, C has proven to be an extremely effective and expres-
sive language for a wide variety of programming applications.

The rest of the book is organized as follows. Chapter 1 is a tutorial
introduction to the central part of C. The purpose is to get the reader
started as quickly as possible, since we believe strongly that the only way to
learn a new language is to write programs in it. The tutorial does assume a
working knowledge of the basic elements of programming; there is no expla-
nation of computers, of compilation, nor of the meaning of an expression
like n=n+1. Although we have tried where possible to show useful pro-
gramming techniques, the book is not intended to be a reference work on
data structures and algorithms; when forced to a choice, we have concen-
trated on the language. ‘

Chapters 2 through 6 discuss various aspects of C in more detail, and
rather more formally, than does Chapter 1, although the emphasis is still on
examples of complete, useful programs, rather than isolated fragments.
Chapter 2 deals with the basic data types, operators and expressions.
Chapter 3 treats control flow: if-else, while, for, etc. Chapter 4 cov-
ers functions and program structure — external variables, scope rules, and
so on. Chapter 5 discusses pointers and address arithmetic. Chapter 6 con-
tains the details of structures and unions.

Chapter 7 describes the standard C I/0 library, which provides a com-
mon interface to the operating system. This I/O library is supported on all
machines that support C, so programs which use it for input, output, and
other system functions can be moved from one system to another essentially
without change.

Chapter 8 describes the interface between C programs and the UNIX
operating system, concentrating on input/output, the file system, and porta-
bility. Although some of this chapter is UNIX-specific, programmers who
are not using a UNIX system should still find useful material here, including
some insight into how one version of the standard library is implemented,
and suggestions on achieving portable code.

Appendix A contains the C reference manual. This is the ‘‘official”
statement of the syntax and semantics of C, and (except for one’s own com-
. piler) the final arbiter of any ambiguities and omissions from the earlier
chapters.

Since C is an evolving language that exists on a variety of systems, some
of the material in this book may not correspond to the current state of
development for a particular system. We have tried to steer clear of such
problems, and to warnof potential difficulties. When in doubt, however, we
have generally chosen to describe the PDP-11 UNIX situation, since that is
the environment of the majority of C programmers. Appendix A also
describes implementation differences on the major C systems.

CHAPTER 1: A TUTORIAL INTRODUCTION

Let us begin with a quick introduction to C. OQur aim is to show the
essential elements of the language in real programs, but without getting
bogged down in details, formal rules, and exceptions. At this point, we are
not trying to be complete or even precise (save that the examples are meant
to be correct). We want to get you as quickly as possible to the point where
you can write useful programs, and to do that we have to concentrate on the
basics: variables and constants, arithmetic, control flow, functions, and the
rudiménts of input and output. We are quite intentionally leaving out of
this chapter features of C which are of vital importance for writing bigger
programs. These include pointers, structures, most of C’s rich set of opera-
tors, several control flow statements, and myriad details.

This approach has its drawbacks, of course. Most notable is that the
complete story on any particular language feature is not found in a single
place, and the tutorial, by being brief, may also mislead. And because they
can not use the full power of C, the examples are not as concise and elegant
as they might be. We have tried to minimize these effects, but be warned.

Another drawback is that later chapters will necessarily repeat some of
this chapter. We hope that the repetition will help you more than it annoys.

In any case, experienced programmers should be able to extrapolate
from the material in this chapter to their own programming needs.
Beginners should supplement it by writing small, similar programs of their
own. Both groups can use it as a framework on which to hang the more
detailed descriptions that begin in Chapter 2.

1.1 Getting Started

The only way to learn a new programming language is by writing pro-
grams in it. The first program to write is the same for all languages:

Print the words
hello, world

This is the basic hurdle; to leap over it you have to be able to create the

5

6 THE C PROGRAMMING LANGUAGE CHAPTER 1

program text somewhere, compile it successfully, load it, run it, and find out
where your output went. With these mechanical details mastered, every-
thing else is comparatively easy.

In C, the program to print “‘hello, world™ is

main()

{
printf ("hello, world\n”");
}

Just how to run this program depends on the system you are using. As
a specific example, on the UNIX operating system you must create the
source program in a file whose name ends in ‘““.c”’, such as hello.c, then
compile it with the command

cc helio.c

If you haven’t botched anything, such as omitting a character or misspelling
something, the compilation will proceed silently, and make an executable
file called a.out. Running that by the command

a.out
will produce

hello, world

as its output. On other systems, the rules will be different; check with a
local expert.

Exercise 1-1. Run this program on your system. Experiment with leaving
out parts of the program, to see what error messages you get. O

Now for some explanations about the program itself. A C program,
whatever its size, consists of one or more ‘‘functions’ which specify the
actual computing operations that are to be done. C functions are similar to
the functions and subroutines of a Fortran program or the procedures of
PL/I, Pascal, etc. In our example, main is such a function. Normally you
are at liberty to give functions whatever names you like, but main is a spe-
cial name — your program begins executing at the beginning of main. This
means that every program must have a main somewhere. main will usually
invoke other functions to perform its job, some coming from the same pro-
gram, and others from libraries of previously written functions.

One method of communicating data between functions is by arguments.
The parentheses following the function name surround the argument list;
here main is a function of no arguments, indicated by (). The braces {}
enclose the statements that make up the function; they are analogous to the
DO-END of PL/I, or the begin—end of Algol, Pascal, and so on. A func-
tion is invoked by naming it, followed by a parenthesized list of arguments.

CHAPTER 1 A TUTORIAL INTRODUCTION

There is no CALL statement as there is in Fortran or PL/I. The parentheses
must be present even if there are no arguments.
The line that says

printf ("hello, world\n");

is a function call, which calls a function named print£, with the argument
"hello, world\n". printf is a library function which prints output on
the terminal (unless some other destination is specified). In this case it
prints the string of characters that make up its argument.

A sequence of any number of characters enclosed in the double quotes
n, . .v is called a character string or _string constant For the moment our
only use of character strings will be as arguments for printf and other
functions.

The sequence \n in the string is C notation for the newline character,
which when printed advances the terminal to the left margin on the next
line. If you leave out the \n (a worthwhile experiment), you will find that
your output is not terminated by a line feed. The only way to get a newline
character into the printf argument is with \n; if you try something like

printf (*hello, world
");

the C compiler will print unfriendly diagnostics about missing quotes.
_printf never supplies a newline automatically, so multiple calls may

be used to build up an output line in stages. Our first program could just as
well have been written

main()

{
printf {*hello, ™);
printf ("world");
printf ("\n");

1o produce an identical output.

Notice that \n represents only a single character. An escape sequence
like \n provides™a general and extensible mechanism for representing hard-
to-get or invisible characters. Among the others that C provides are \t for

tab, \b for backspace, \" for the double quote, and \\ for the backslash
itself

Exercise 1-2. Experiment to find out what happens when print£’s argu-
ment string contains \x, where x is some character not listed above. O

8 THE C PROGRAMMING LANGUAGE CHAPTER 1

1.2 Variables and Arithmetic

The next program prints the following table of Fahrenheit temperatures

and their centigrade or Celsius equivalents, using the formula
C = (5/9(F-32).

0 -17.8
20 -6.7
40 4.4
60 15.6

260 126.7
280 137.8
300 148.9

Here is the program itself.

/% print Fahrenheit-Celsius table
for £ = 0, 20, ..., 300 %/

main()

{
int lower, upper, step;
float fahr, celsius;

lowexr = 0; /% lower limit of temperature table */
upper = 300; /% upper limit */
step = 20; /* step size %/

, fahr = lower;

lwhile (fahr <= upper) {
celsius = (5.0/9.0) * (fahr-32.0);
printf ("%4.0f %6.1£f\n", fahr, celsius);
fahr = fahr + step;

}
The first two lines

/% print Fahrenheit-Celsius table
for £ =0, 20, ..., 300 */

are a comment, which in this case explains briefly what the program does.
Any characters between /% and */ are ignored by the compiler; they may
be used freely to make a program easier to understand. Comments may
appear anywhere a blank or newline can.

In C, all variables must be declared before use, usually at the beginning
of the function before any executable statements. If you forget a declara-
tion, you will get a diagnostic from the compiler. A declaration consists of a
type and a list of variables which have that type, as in

