ARTIFICIAL INTEI_I.IGENCE
- AND SIMU éf;leo_N

————"
Tvobmezs |

i '?Cg Awsucmouormesoammncowumsmumm .

=

[o Wa Wi

y D)
</ ") y R

e

597

Artificial Intelligence
and Simulation

Proceedings of the Simulation MultiConference on
Artificial Intelligence and Simulation
1-5 April 1991
New Orleans, Louisiana

Edited by
Ranjeet J. Uttamsingh
Synetics

A. Martin Wildberger
General Physics

IR

Simulation Series
Volume 23
Number 4

E9360697

¥

o

Sponsored by
The Society for Computer Simulation (SCS)

MNecc]
[5Cs)

© 1991 SIMULATION COUNCILS, INC.

Responsibility for the accuracy of all statements in each paper rests solely with the author(s). Statements
are not necessarily representative of nor endorsed by The Society for Computer Simulation.

Permission is granted to photocopy portions of this publication for personal use and for the use of students
providing credit is given to the conference and publication. Permission does not extend to other types of
reproduction nor to copying forincorporation into commercial advertising nor for any other profit-making
purpose. Other publications are encouraged to include 300- to 500-word abstracts of excerpts from any
paper contained in this book, provided credits are given to the author and the conference. For permission
to publish a complete paper write: The Society for Computer Simulation (SCS), P. O. Box 17900, San
Diego, CA 92177, U.S.A.

Additional copies of the Proceedings are available from:
The Society for Computer Simulation

P. O. Box 17900
San Diego, CA 92177 US.A.

ISBN 0-911801-88-X

PRINTED IN THE UNITED STATES

Titles in the Simulation Series — - — e

Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.

1No. 1
1 No. 2
2 No. 1
2 No. 2
3 No.1
3 No.
4 No.
4 No.
5 No.
5 No.
6 No.
6 No.
7 No.
7 No.
8 No.
8 No.
9 No.
9 No.
10 No.
10 No.
11 No.
11 No.
12 No.
12 No.
13 No.
13 No.
14 No.
14 No.
15 No.
15 No.
16 No.
16 No.
17 No.
17 No.
18 No.
18 No.
18 No.
18 No.
19 No.
19 No.
19 No.
19 No.
20 No.
20 No.
20 No.
20 No.
21 No.
21 No.
21 No.
21 No.
22 No.
22 No.
22 No.
22 No.
23 No.
23 No.
23 No.

N

N = N = N =N =N =N -

1
2

1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4

1
2
3

Vol. 23 No. 4

Mathematical Models of Public Systems ~ George A. Bekey, Editor January 1971

Systems and Simulation in the Service of Society David D. Sworder, Editor July 1971

The Mathematics of Large-Scale Simulation Paul Brock, Editor June 1972

Recent Developments in Urban Gaming Philip D. Patterson, Editor December 1972

Computer Simulation in Design Applications Sail Ashour and Marvin M. Johnson, Editors June 1973
Simulation Systems for Manufacturing Industries Marvin M. Johnson and Said Ashour, Editors December 1973
Annotated Bibliographies of Simulation Tuncer . Oren, Editor June 1974

Spanning the Applications of Simulation Paul Brock, Editor December 1974

New Directions in the Analysis of Ecological Systems: Part 1~ George S. Innis, Editor June 1975

New Directions in the Analysis of Ecological Systems: Part 2 George S. Innis, Editor December 1975

Toward Real-Time Simulation (Languages, Models and Systerns), Part 1 Roy E. Crosbie and John L. Hay, Editors June 1976
Toward Real-Time Simulation (Languages, Models and Systems), Part 2 Roy E. Crosbie and John L. Hay, Editors December 1976
An Overview of Simulation in Highway Transportation: Part 1 James E. Bemnard, Editor June 1977

An Overview of Simulation in Highway Transportation: Part 2 James E. Bernard, Editor December 1977
Simulation in Energy Systems: Part 1 Kenneth E. F. Watt, Editor June 1978

Simulation of Energy Systems: Part 2 Kenneth E. F. Watt, Editor December 1978

Simulation in Business Planning and Decision Making Thomas H. Naylor, Editor July 1981

Simulating the Environmental Impact of a Large Hydroeledtric Project Nommand Therien, Editor July 1981
Survey of the Apllication of Simulation to Health Care Stephen D. Roberts and William L. England, Editors December 1981
Computer Modeling and Simulation: Principles of Good Practice John McLeod, Editor June 1982

Peripheral Array Processors Walter). Karplus, Editor October 1982

Computer Simulation in Emergency Planning John M. Carroll, Editor January 1983

Lumped-Parameter Models of Hydrocarbon Reservoirs Ellis A. Monash, Editor March 1983

Computer Models for Production and Inventory Control Haluk Bekiroglu, Editor January 1984

Aerospace Simulation Monte Ung, Editor February 1984

Simulation in Strongly Typed Languages: ADA, PASCAL, SIMULA... Ray Bryant and Brian W. Unger, Editors February 1984
All About Simulators, 1984 Vince Amico and A. Ben Clymer, Editors April 1984

Peripheral Array Processors Walter). Karplus, Editor October 1984

Emergency Planning John M. Carmoll, Editor January 1985

Distributed Simulation 1985 Paul F. Reynolds, Editor January 1985

Simulators John S. Gardenier, Editor March 1985

Aerospace Simulation Il Monte Ung, Editor January 1986

Intelligent Simulation Environments Paul A. Luker and Heimo H. Adelsberger, Editors January 1986
Simulators Il Bruce T. Fairchild, Editor March 1986

Al Applied to Simulation E.). H. Kerckhoffs, G. C. Vansteenkiste and B. P. Zeigler, Editors February 1986
Multiprocessors and Array Processors ~ Walter). Karplus, Editor ~ April 1987

Simulation and Al Paul Luker and Graham Birtwistle, Editors July 1987

Simulators IV Bruce T. Fairchild, Editor October 1987

Methodology and Validation ~Osman Balci, Editor January 1988

Aerospace Simulation il Monte Ung, Editor April 1988 .

Distributed Simulation, 1988 Brian Unger and David Jefferson, Editors July 1988

Simulators V A. Ben Clymer and G. Vince Amico, Editors October 1988

Al Papers, 1988 Ranjeet). Uttamsingh, Editor January 1989

Simulation in Emergency Management and Technology Jim Sullivan and Ross T. Newkirk, Editors ~ April 1988
Simulation and Al, 1989 Wade Webster, Editor April 1988

Advances in Al and Simulation Ranjeet Uttamsingh and A. Martin Wildberger, Editors March 1989
Multiprocessors and Array Processors V. Walter J. Karplus, Editor March 1989

Distributed Simulation, 1989 Brian Unger and Richard Fujimoto, Editors March 1989

Simulators VI Ariel Sharon and Mohammad R. Fakory, Editors March 1989

Simulation in Business and Management Sal Belardo and Jay Weinroth, Editors January 1990

Distributed Simulation David Nicol, Editor January 1990

Simulators VIl Ariel Sharon and M. R. Fakory, Editors April 1990

Al and Simulation: Theory and Applications Wade Webster and Ranjeet Uttamsingh, Editors April 1990
Simulation in Energy Systems ~ W. Frisch, B. Cordier, and A. Héld, Editors ~ October 1990

Advances in Parallel and Distributed Simulation Vijay Madisetti, David Nicol, and Richard Fujimoto, Editors January 1991
Simulation in Business and Management Il Jay Weinroth and Joe Hilber, Editors January 1991
Object-Oriented Simulation, 1991 Raimund K. Ege, Editor January 1991

Attificial Intelligence and Simulation Ranjeet J. Uttamsingh and A. Martin Wildberger, Editors ~ April 1991

PREFACE

The interdisciplinary field, artificial intelligence and simulation, has a complex and intricate terrain that
includes both a wide variety of applications and many deep theoretical issues. Most of these theoretical
issues have been inherited from its two parent disciplines, but the unique technology produced by their
combination has raised questions, and possible answers, of its own.

No one conference, or one volume of papers, could be expected to address all of these applications and
issues. The papers in this volume provide more than a representative sample. They include most of the
papers presented at the 1991 Artificial Intelligence and Simulation Conference, held in New Orleans,
Louisiana, U.S.A., April 1-5. The applications described range over science, engineering and industry, with
emphasis on manufacturing and agriculture. A number of hardware and software tools are also presented,
both general purpose, and specialized to particular applications. Theoretical and practical issues in simula-
tion modeling are discussed in the context of artificial intelligence. The representative of knowledge is of
major concern in all Al work. The emphasis in this volume is on its relations to the modeling of data and
the interconnections between knowledge bases and data bases.

The tutorials presented at the conference provided a balanced introduction to both theory and practice in
some of the most active research and development areas within Al and simulation. Since the practical side
was presented mainly through demonstrations, the theoretical aspect is more apparent in the summaries
included here.

All-in-all, this volume is a fitting tribute to Dr. Ranjeet). Uttamsingh, whose conception it was, and to
whose lasting memory it is dedicated.

A. Martin Wildberger
Editor and Deputy Program Chairman
General Physics Corporation

vii

CONTENTS Page Authors
_Preface vii A. Martin Wildberger
Solving Synchronization Problems in Rapid Simulation 3 John C. Peck
of a Manufacturing Shop-Floor Roy P. Pargas
Prashant K. Khambekar
Satish K. Dharmaraj
Knowledge-Based Interactive Real-Time Control System 9 Qi-zhi Sun
in Discrete Manufacturing Christopher N. Chrystall
Michael M. Kaye
Performance Analysis of Discrete Systems 15 Axel Lehmann
A Semantic Network Approach to Low Volume Manufacturing 17 David A. Koonce
Schedule Monitoring and Control Charles M. Parks
A Real-Time Expert System for Monitoring the Waste 23 Fatih Kinoglu
Incineration Process
An Artificial Intelligence Technique for On-Line Diagnosis 29 M. Serry Taha
of Power Systems Disturbances
AutoCRAT: An Automated Design Tool for 35 Donald Schwartz
Constraint Refinement Subrata Dasgupta
Lois Delcambre
Steve Landry
Roxanne Andrieux
Eric Metzger
An Object Oriented Simulation Environment 41 R. K. Ragade
D. Rush
A. S. Elmaghraby
A. Kumar
Designing the Intelligent Component of a User Interface 47 D. Peter Sanderson
for Modeling and Simulation Siegfried Treu
Weight-Oriented Inference for Design Model Generation 53 Jhyfang Hu
Lifetime Software-Hardware Operability Simulation Via PC 59 Irving Doshay
Artificial Intelligence and Ship Design, Analysis 65 Nikolaos Glinos
and Evaluation
Knowledge Based Approach for Routing in 71 Anup Kumar
Communications Networks Savita Singh
Artificial Neural Network Based System Discrimination 77 Swapan Chakrabarti
Amer Chaaban

CONTENTS Page Authors

Simulation and Design of Artificially Intelligent/Adaptive 83 John R. Clymer

Decision Making in Systems

Beef Marbling Estimation Using Frequency Analysis of 93 James Darrell McCauley

Ultrasonic A-Mode and Neural Networks

Decision Analysis Using Linguistic Approximation in 98 Suri Thangavadivelu

an Agricultural Environment Thomas S. Colvin

Simulation of Animal Learning Using an Inductive Memory 104 Harold E. Mueller
L. Joseph Folse
James E. Brown lll

Simulating Spatially Variable Agronomic Inputs 109 James Darrell McCauley
A. Dale Whittaker

An Event-Driven Approach to Software Development 113 Ying Yang

Process Modeling

A Logic for Cognitive Modeling: Interim Report 119 William P. Coleman

Temporal Logic as a Simulation Language 122 Alexander Tuzhilin

Integration of Abductive and Deductive Inference Diagnosis 127 Stewart N. T. Shen

Methodology in Intelligent Tutoring Jingying Zhang

Document Classification Using ID3 133 Sanjiv K. Bhatia
Jitender S. Deogun
Vijay V. Raghavan

Design of a CLOS Version of Active KDL: A Knowledge/Data 139 Krys J. Kochut

Base System Capable of Query Driven Simulation John A. Miller
Walter D. Potter

Realizing System Entity Structure in a Relational Database 146 Tag Gon Kim

Comparison of Neural Network and Expert System Technology 152 A. Martin Wildberger

Author Index 161

vi

ARTIFICIAL INTELLIGENCE
AND SIMULATION

SOLVING SYNCHRONIZATION PROBLEMS IN RAPID SIMULATION
OF A MANUFACTURING SHOP-FLOOR

John C. Peck, Roy P. Pargas, Prashant K. Khambekar, Satish K. Dharmaraj
Department of Computer Science
Clemson University
Clemson, South Carolina 29634-1906

ABSTRACT

This paper describes a solution to synchronization
problems which arise in rapid near-term simulation of
manufacturing. The purpose of the simulator is to pro-
vide management with a tool for use in creating and
evaluating schedules as part of production planning. In
order to run as accurate a simulation as possible, data
describing the current status of the manufacturing plant
is continually collected by a real-time shop-floor con-
trol system. This data is used to start the simulator
in an initial state. Performance of the simulation with
quick run-time strongly suggest a parallel implementa-
tion; T-800 INMOS transputers are used with a PC as
a front-end processor. Unlike a single processor simula-
tion, a parallel simulation gives rise to synchronization
problems, deadlock and starvation. These problems are
analyzed and solutions which enable an accurate, con-
servative simulation are presented.

INTRODUCTION

Apparel plants operate on a larger scale than man-
ufacturing plants in many other industries. A typical
apparel plant may have more than 400 direct labor (in-
centive) employees with perhaps 500 machines (some
large plants have 1500+ employees and a correspond-
ingly larger number of machines). Both employees and
machines are capable of performing multiple operations,
but only a small percentage of the total operations are
required to manufacture a particular garment. Active
on the shop-floor at any one time might be 100 or more
production lots (orders) each consisting of perhaps 200
bundles of garment parts, each bundle consisting of five
or more subassemblies, each subassembly requiring one
to twenty operations. Production lots are possibly of
different styles, meaning the operations and sequencing
of operations are different. Bundle subassemblies flow
through the manufacturing process in parallel and join
(merge), as operations are completed, to produce fin-

ished garments. The correct matching of subassemblies
from parent bundles is important since color shading
variations will be noticeable otherwise. Production lots
have due dates by which they must be shipped out. Since
employees and machines have multiple, but limited, skills
and capabilities, balancing these resources against re-
quired work, that is, developing an operational plan, is
a major problem.

The ultimate goal in production scheduling is to
improve the operation of a plant. The primary question
is “How does one know if a change in an operational
plan produces a better or worse schedule?” A near-term
simulator of shop-floor operations of an apparel manu-
facturing plans has been developed to enable the man-
ager to evaluate such a plan. High-level performance
information in the form of graphics is continuously dis-
played. The manager can evaluate the plan and in case
the performance metrics are not satisfactory, rerun the
simulation with a new plan, all in a matter of minutes.
Details of the simulation can be found in Pargas et al.

1990.

Rather than using statistical distributions to es-
timate crucial input information (which many simula-
tions do) the near-term simulator uses a real-time system
(Foxfire 1989) to measure, in advance, information such
as the rate of arrival of goods to be processed, processing
rates of different machines and efficiencies of employees.
Thus the question of accuracy of estimates does not arise.

Since production goals, such as keeping inventory
low or machine utilization high, vary from plant to plant,
or indeed, from time to time in the same plant, and man-
agement styles vary from person to person, a large num-
ber of performance metrics are made available. A man-
ager may select and observe any of the metric graphs on
the front-end and optimize performance based on them.
The sixty or so metrics fall into different classes: Cost,
Production, Efficiency, Lateness, Labor utilization and
Waiting Time (Peck et al. 1991).

The complexity of the application, large input data,
large number of metrics and quick simulation require-

ment necessitate a parallel simulation. The implemen-
tation is done on a multiprocessor system built by Com-
puter Systems Architects of Provo, Utah. It consists of
17 INMOS T-800 Transputers, each with 2 Mbytes of
memory. The Transputers integrate a 32-bit processor,
a 64-bit floating point unit and 4 Kbytes of static RAM.
One of the Transputers (called the root) is connected to
a standard PC front-end whereas the other 17 Trans-
puters are networked among themselves and connected
to the root.

A major design decision was to break up the major
functions of the simulation among the processors avail-
able. The primary functions are input and output, ex-
ecution of the simulation itself and collection and pro-
cessing of performance metric data. A natural assign-
ment of functions to processors was to assign all in-
put/output functions (that is, inputting the data and
displaying graphs) to the front-end PC, the simulation
to the Transputer nodes, and the collection and process-
ing of metric data to the root Transputer. The design is
clean: the user is unaware of the Transputers,.the pro-
gram on the PC is independent of the number of Trans-
puters and the simulation program on the Transputers is
independent of the front-end. The Transputer nodes ex-
ecute a distributed event-driven simulation and exploit
the natural parallelism on the shop-floor. Distributed
simulation gives rise to synchronization problems, dead-
lock and starvation. The solution to these problems is
presented in this paper.

THE APPAREL PLANT SHOP-FLOOR

Bundles of garment parts are sewn according to
their respective style (operation) flow graphs. Figure 1
shows two style flow graphs. The circles represent op-
erations to be performed, for example, operation 17 is
“hem placket” and operation 41 is “top-stitch pocket”.
On the shop-floor each operation has a buffer and one
or more workstations are configured to perform that op-
eration. When employees are assigned to a workstation,
a bundle is extracted from the workstation’s buffer, the
operation is performed and then the bundle is sent to the
buffer corresponding to the next operation in the style
flow graph.

Bundles carry with them the expected processing
time for each operation in the style graph. This time,
called Standard Allowed Minutes (SAMS), is obtained
from engineering time-motion studies. Employees differ
in their efficiency of performing operations. Efficiency is
defined as the ratio of SAMS to actual minutes and can
be above or below 100%. Hence, although the SAMS
value of an operation is known in advance, the actual

service time depends on which employee picks up the
bundle, and is only available when the processing of the
bundle is simulated.

There are three types of events: bundle events such
as the completion of an operation or the arrival of a pro-
duction lot, employee events such as an employee signing
in for work or an employee being reassigned to another
workstation, and workstation events such as a worksta-
tion being reconfigured for a different type operation.
The most common event is the completion of an opera-
tion.

PARALLEL SIMULATION

For the simulation, operations are mapped to pro-
cessors in the transputer system. A processor may sim-
ulate one or more operations. Each operation’s buffer is
represented by a queue and bundles are picked from the
queue in order of priority and in case of equal priority,
in order of time of arrival.

For correct simulation workstations configured for
the same operation (and so drawing from the same
buffer) must coordinate. This is most easily achieved by
requiring that all workstations configured for the same
operation be simulated in the same processor. Activi-
ties of all employees assigned to such workstations are
also simulated in the same processor. Thus each pro-
cessor has its independent queue of events and performs
event-driven simulation synchronized by a logical clock.
The logical clock is defined as the time of the last event
processed by the processor.

A majority of researchers in distributed simulation
use a logical process for each real process (e.g., worksta-
tion) in the application. Each logical process communi-
cates with other logical processes. However as has been
shown by Nicol (Nicol 1988), if the number of logical
processes is greater than the number of physical proces-
sors, an overhead of context switching is experienced and
efficiency is reduced. Hence in this simulation buffers,
workstations and employees in one processor are han-
dled by a single process. Since the event queue is stored
in ascending time order all events within (and resultant
messages from) a processor are in logical time sequence.

Transputer processors communicate with each
other using messages. All messages are time-stamped,
that is, they carry the logical clock time at which the
sending processor issued the message. The majority of
interprocessor messages are bundle messages which in-
dicate the transfer of a bundle from one processor to a
buffer in another processor for further processing accord-
ing to the bundle’s style flow graph. The sending proces-
sor is called the predecessor and the receiving processor

Style 1

Style 2

Figure 1: Typical Style Flow Graphs

is called the successor.

Although each style flow graph is feed-forward and
has no cycles, the intersection of styles gives rise to cy-
cles. As an example, in style 1 of Figure 1 operation
41 precedes operation 8 which precedes operation 45. In
style 2 operation 45 precedes operation 41. Thus 41, 8§
and 45 form a cycle of operations in the merged style
graph. If such cycles were small, that is, composed of
less than 8 operations (as compared to the total num-
ber of operations being in the range of 100), then op-
erations which form cycles could all be mapped to the
same processor, thus giving rise to a cycle-free intercon-
nection among processors. Indeed this was the initial
expectation (Khambekar and Dharmaraj 1990). How-
ever, examining the style flow graphs reveals that this is
not feasible. Figure 2 shows the result of intersecting 21
style flow graphs. All operations in the big oval form a
single cycle; thus 33 out of the 42 operations are involved
in a cycle. Hence, cycles between processors cannot be
avoided unless 75% or more of the simulation is per-
formed in a single processor. As a means of distributing
the workload, operations are mapped to processors such
that the processors have equal number of operations.

SYNCHRONIZATION PROBLEMS

Since each processor has an independent event
queue and logical clock, it is possible that the logical

clock of a predecessor is greater than, equal to or less
than the logical clock of the successor. If the logical
clock of the predecessor is less than that of the succes-
sor, a message sent by the predecessor will arrive in the
successor’s simulated past and either compromise the ac-
curacy of the simulation or incur additional overhead
to undo earlier events. Accordingly, there are two ap-
proaches: Optimistic approaches (Jefferson 1985; Sokol
et al. 1988) allow messages to arrive in the simulated
past and in case such a message arrives, a roll-back of
the simulation is initiated back to the time in the mes-
sage. Conservative approaches prevent events from exe-
cuting out of time sequence. Optimistic approaches in-
volve keeping the state of the simulation at every step
and sending anti-messages to cancel the effect of ear-
lier non-chronological actions. Since keeping the states
is memory-intensive and the amount of memory in each
transputer is limited (compared to the complexity of the
application) and virtual memory is not available, a con-
servative simulation approach was selected. Therefore,
before a processor can select the next event, it must know
that none of its predecessor processors will send a mes-
sage with a lesser time-stamp. This restriction can cause
the processor to wait for messages till the message time-
stamps are equal to or greater than the time of the next
event.

Two synchronization problems can occur with this
conservative approach: deadlock and starvation (no-

Figure 2: Composite Graph from Intersection of 21 Styles.

progress). Deadlock is the state in which a collection
of processors cannot progress because they are cyclically
waiting for input from one another. Starvation is the
state in which some processors cannot progress because
they are waiting for input from other processors (al-
though the latter could be progressing normally). Dead-
lock arises if cycles are present in the flow graphs of the
processors sending messages or if virtual “waiting” cy-
cles may form due to finite buffers. Starvation is possible
even if there are no cycles and buffers are infinite.

There are a number of approaches to solve the syn-
chronization problems, many of which are described in
an early survey by Misra (Misra 1986). In case of dead-
lock, Chandy and Misra (Chandy and Misra 1981) and
Chandy, et al. (Chandy et al. 1983) suggest deadlock
detection approaches, which let deadlock occur, detect
it and then break it using collective global information.
The former uses a central controller whereas the latter
sends out queries for deadlock detection. However, sev-
eral studies (Fujimoto 1988, Reed et al. 1988, Reed and
Malony 88) indicate limited speed-up. These approaches
do not address the starvation case.

The Null Message approach was developed indepen-
dently by Bryant (Bryant 1977), Chandy-Misra (Chandy
and Misra 1979a; Chandy and Misra 1979b) and Peacock
et al. (Peacock et al. 1979a, Peacock et al 1979b). Mes-
sages which contain the current simulation time are sent
from each processor to its successors so that the suc-

cessors may proceed. However, the look-ahead provided
by these null messages is limited (Peacock et al. 1979b,
Nicol 1988) and studies show that choking of the simu-
lation due to excessive null messages is likely (Fujimoto
1988, Reed et al. 1988, Reed and Maloney 88). (How-
ever, the studies were done on shared memory machines
so the application of their results to distributed machines
is subject to question.)

Peacock, et al. (Peacock et al. 1979a) also suggest
a Blocking Table approach in which a processor blocks
when the time of any of its predecessors is less than
its own. However this approach involves one-to-many
broadcasts to keep the tables current. Bezivin and Im-
bert (Bezivin and Imbert 1982) proposed a monitor ap-
proach and Christopher et al. (Christopher et al. 1982)
a transaction baséd approach. Both involve centralized
controllers which can be bottlenecks in a distributed sys-
tem.

In the Appointment approach (Nicol and Reynolds
1984), processors demand appointment times from their
predecessors and cannot simulate beyond the smallest
of these times. The demand-driven Appointment ap-
proach has the advantage that it avoids unnecessary mes-
sages. Nicol (Nicol 1988) develops appointments further
and provides greater look-ahead by doing application-
dependent calculations. In case of stochastic networks,
the service time is sampled probabilistically and it can
be sampled even before the job arrives at the proces-

sor. Thus one can have a future list of events and higher
appointment bounds, but its applicability is limited.

THE METHOD USED: APPOINTMENTS

In the near-term simulation described in this paper
cycles between processors cannot be avoided. Starva-
tion is also a concern since the output metrics cannot
be obtained speedily if starvation occurs. Deadlock de-
tection approaches to solving synchronization problems
were deemed infeasible since they cannot prevent star-
vation. Null Messages were ruled out because of their
limited look-ahead and probable choking. Monitor and
transaction approaches were ruled out because of the
possibility of bottlenecks.

Nicol and Reynolds’ appointment approach seemed
most promising and was adapted and enhanced for the
near-term simulation. When a processor cannot make
progress because of the unavailability of an event mes-
sage from a predecessor, i sends a request message to
that processor. The predecessor processor responds with
an appointment time. Based upon the received appoint-
ment time the impeded processor may be able to process
some buffered events and make progress.

The appointment time sent is not merely the cur-
rent simulated time but rather is a time obtained by
examining the buffers and the bundles in the processor.
This application-dependent appointment time (similar
to Nicol (Nicol 1988)) provides a good look-ahead.

When a request is sent by processor P; to a pre-
decessor processor P; the next event time, ¢, to which
P; desires to advance is sent in the request. P, thus,
only has to check its buffers for events which will com-
plete before t. This saves P; from having to check its
entire buffer list. If an appropriate event destined for P;
is found by P; then the time of that event is sent as an
appointment. If there is no event which can complete
before ¢, then P; replies with a “you can proceed” mes-
sage. If P; has no pending event destined for P; it sends
a “failed” message.

P; sends requests to those of its predecessors from
whom it has no buffered messages. If the received mes-
sages are “you can proceed” messages or appointments,
P; can advance its clock to the smallest received appoint-
ment. If all the received messages are “you can proceed”
then P; can advance its clock to . Upon receiving any
“failed” messages, P; waits for a small amount of time
and restarts sending requests.

With this approach both deadlock and starvation
are prevented. In terms of the design characteristics out-
lined by Reynolds (Reynolds 1988), this method is ac-
curate, non-aggressive, has no risk and employs knowl-

edge acquisition and knowledge embedding. It is non-
aggressive because events are always processed in in-
creasing time order and not on conditional knowledge.
As aresult the method is accurate; events are ultimately
processed in increasing time order. There is no risk;
events based on conditional knowledge are not propa-
gated because there are no such events. Knowledge ac-
quisition is used since the processors initiate requests for
knowledge from other processors. Knowledge embedding
is utilized because knowledge about the applications be-
havioral attributes is embedded in the simulation.

CONCLUSION

The complexity and performance requirements of
the near-term simulator strongly suggest a parallel sim-
ulation. Unlike a single processor simulation, a parallel
simulation gives rise to synchronization problems. These
problems have been analyzed and an approach which en-
ables an accurate, conservative simulation has been pre-
sented. The simulator has been completely implemented
and real data obtained from an apparel plant is currently
being processed. A pilot installation in a production ap-
parel plant is expected to begin in summer 1991.

Future research will investigate algorithms for dy-
namically balancing the load across the processors of the
transputer system. This balancing will be achieved by
remapping operation buffers to processors with expected
improvement in performance.

REFERENCES

Bezivin, J. and H. Imbert. 1982. “Adapting a Sim-
ulation Language to a Distributed Environment”. In
Proceedings of the 3rd International Conference on Dis-
tributed Computing Systems, (Ft. Lauderdale, FL),
IEEE, N.Y., 596-603.

Bryant, R.E. 1977. “Simulation of Packet Commu-
nication Architecture Systems”. Technical Report.
MIT/LCS/TR-188, MIT, Cambridge, MA, (Nov.).

Christopher, T.; M. Evens; R.R. Gargeya; and T. Leon-
hardt. 1982. “Structure of a Distributed Simulation
System”. In Proceedings of the 3rd International Con-
ference on Distributed Computing Systems (Ft. Laud-
erdale, Fl.), IEEE, N.Y., 584-589.

Chandy, K.M.; L.M. Haas; and J. Misra. 1983. “Dis-
tributed Deadlock Detection”, ACM Transactions on
Computer Systems 1, no. 2 (May), 144-156.

Chandy, K.M. and J. Misra. 1979a. “Distributed Sim-

ulation: A Case Study in Design and Verification of
Distributed Programs”, IEEE Transactions on Software
Engineering SE-5, no. 5 (Sep.), 440-452.

Chandy, K.M. and J. Misra. 1979b. “Deadlock Absence
Proofs for Networks of Communicating Processes”, In-
formation Processing Letters 9, no. 4 (Nov.), 185-189.

Foxfire Technologies Corporation. 1989. Real-time
Shop-Floor Conirol System User Manual, Marietta, GA.

Fujimoto, R.M. 1988. “Performance Measurements of
Distributed Simulation Strategies”. In Distributed Sim-
ulation 1988: Proceedings of the SCS Multiconference on
Distributed Simulation (Feb. 3-5), SCS, San Diego, CA,
14-20. .

Jefferson, D.R. 1985. “Virtual Time”, ACM Transac-
tions on Programming Languages and Systems 7, no. 3
(Jul.), 404-425.

Khambekar, P.K. and S.K. Dharmaraj. 1990. “Ap-
proaches to Solving Synchronization Problems in Par-
allel Simulation of an Apparel Plant.” In Proceed-
ings of the 1990 ACM Southeast Regional Conference
(Greenville, SC, April 18-20), ACM, N.Y., 274-281.

Misra J. 1986. “Distributed Discrete-Event Simulation”,
ACM Computing Surveys 18, no. 1 (Mar.), 39-65.

Nicol, D.M. and P.F. Reynolds. 1984. “Problem Ori-
ented Protocol Design.” In Proceedings of the 1984 Win-
ter Simulation Conference (16th) (Nov. 28-30), 471-476.

Nicol, D.M. 1988. “Parallel Discrete-Event Simulation of
FCFS Stochastic Queueing Networks.” In Proceedings of
the ACM SIGPLAN PPEALS 1988 (Jul.), 124-137.

Pargas, R.P.; J.C. Peck; P.K. Khambekar; and S.K.
Dharmaraj. 1990. “Near-term Distributed Simula-
tion of Apparel Manufacturing.” In Proceedings of the
1990 Winter Simulation Conference (New Orleans, LA,
Dec. 9-12), SCS, San Diego, CA, 614-618.

Peck, J.C.; R.P. Pargas; P.K. Khambekar; and S.K.
Dharmaraj. 1991. “Shop-Floor Performance Metrics for
the Apparel Industry.” Submitted to the International
Journal of Clothing Science and Technology.

Peacock, J.K.; J.W. Wong; and E.G. Manning. 1979a.
“Distributed Simulation Using a Network of Processors”,
Computer Networks 3, no. 1, 44-56.

Peacock, J.K.; J.W. Wong; and E.G. Manning. 1979b.
“A Distributed Approach to Queueing Network Simu-
lation.” In Proceedings of the 1979 Winter Simulation
Conference (San Diego, CA), IEEE, N.Y., 399-406.

Reed, D.A.; A.D. Malony; and B.D. McCredie. 1988.
“Parallel Discrete Event Simulation Using Shared Mem-
ory”, IEEE Transactions on Software Engineering SE-
14, no. 4 (Apr.), 541-553.

Reed, D.A. and A.D. Malony. 1988. “Parallel Discrete
Event Simulation: The Chandy-Misra Approach.” In
Distributed Simulation 1988: Proceedings of the SCS
Multiconference on Distributed Simulation (Feb. 3-5),
SCS, San Diego, CA, 8-13.

Reynolds, P.F. 1988. “A Spectrum of Options for Paral-
lel Simulation.” In Proceedings of the 1988 Winter Sim-
ulation Conference, (Dec.), 325-332.

Sokol, L.M., D.P. Briscoe; and A.P. Wieland. 1988.
“MTW: A Strategy for Scheduling Discrete Simulation
Events for Concurrent Execution.” In Distributed Simu-
lation, 1988: Proceedings of the SCS Multiconference on
Distributed Simulation (Feb. 3-5), SCS, San Diego, CA,
34-42.

BIOGRAPHY

John C. Peck is a Professor of Computer Science at
Clemson University. He received a B.S. in Mathematics,
and M.S. and Ph.D. degrees in Computer Science, all
from the University of Southwestern Louisiana. His re-
search interests are in database systems and distributed
algorithms. He is currently involved in developing sup-
port systems for manufacturing for the Defense Logistics
Agency. He is also Vice-President for Research and De-
velopment of Foxfire Technologies, Inc. a company that
designs real-time shop-floor control applications for the
apparel industry.

KNOWLEDGE-BASED INTERACTIVE REAL-TIME CONTROL SYSTEM
IN DISCRETE MANUFACTURING

*Qi-zhi Sun,

* Business School
Portsmouth Polytechnic
Milton, Portsmouth PO4 8JFF
United Kingdom

ABSTRACT

A prototype Knowledge-based Interactive Real-time
Control System (KIRCS) is under development in
IBM (UK) Ltd at the Company’s Havant manufac-
turing site. The conceptual framework of KIRCS
and the functions of each module are described in
this paper.

An expert system front end has been developed to
provide decision advice and/or issue control com-
mands based on decision heuristics. The decisions
are evaluated by simulation prior to implementation.
Several aspects which have arisen during the devel-
opment of the system are discussed.

KEYWORDS

Manufacturing, Decision-making, Real-time simu-
lation, Production control, Knowledge-based systems

1 INTRODUCTION

The control of materials flow at shop floor level is a
management problem which has been regarded as an
art rather than a science. The complexity and
dynamics associated with this class of problems fre-
quently make them too difficult to be solved using
mathematical algorithms (Kusiak 1990). Even the
fundamentals are still under research, although
attempts have been made to specify the activitics
involved in shop floor control and the functions
which a real-time control system must perform (Ben-
Arieh, et al. 1988; Swyt 1989).

Beal views Shop Floor Control (logistics) as “a
variant of a standard closed loop control system”
(Beal 1989). Generally speaking, the information
flow of the shop floor control can be illustrated as in
Figure 1.

According to (Tocher 1970), there must be four con-
ditions under which a system may perform control
tasks.

* Action times.
e A set of actions from which to choose.

#Christopher N Chrystall,

tMichael M Kaye

CIM Department
IBM (UK) Ltd
ITavant, Hampshire PO9 1SA
United Kingdom

e A model which can predict the future behaviour
of the system.

» A criterion on which the choice of action is based
by a comparison of predicted behaviour of the
system with the objective.

Requirement changas

- dua date
- urgent jobs /l
Plan & | B N

{ Smooth unbdmem B
Schadul o
=== Execute = Make
- ol o[Re-echeculs egainat |
schedule } S gechion. . >[resources lose
edintaius i ~ < souves s
[,{' Increase oapacity to }
Raedl-time monftoring . mest ihe reculrement
- product flow * compistion ttme
*ylod rete —

- resource usnge * maching Utsation
* toofing exchange
* fabour avellabiMty

IFig. 1 Information flow of shop floor control

Present shop floor control systems generally aim to
generate a schedule spanning a week or longer.
Real-time control environments require such systems
to run on a day by day or shift by shift basis in order
to smooth the production over the week. In highly
automated systems, it is possible to determine the
actions on a hourly basis.

Control actions include the combination of sched-
uling and real-time control (Sun, Kaye and Chrystall
1990). The most commonly used method for sched-
uling is the use of priority sequencing rules. Real-
time control actions include the alteration of process
flow and adjustment of capacity. Ilowever, these
options are dependent on the layout of the system
and the nature of the materials handling facilities.
Most of the control options, therefore, can only be
derived from practice. In some production lines, the
conveyors are designed in such a way that the only
action is to stop the line if there is an equipment
failurc.

The objective of controlling a manufacturing system
is usually not a single target but a trade-off between
multiple criteria. For example, due dates must be
achicved precisely under the Continuous Flow Man-
ufacturing (CFM) policy, and in the meantime,
resource utilisation must be maximised, cost

minimised and work-in-process kept under a certain
level. Tocher claims that “the objective is logically
impossible to achieve at all”.

The ideal situation would be that, at one action
time, the possible actions are represented in a math-
ematical form and a prospective action is identified
by using optimising techniques. Theoretically, sched-
uling optimisation is possible if some objective cri-
teria can be compromised and constraints relaxed
(Kusiak 1990). However, Jagdev reviewed the com-
mercial packages available for shop floor control
applications and found that no optimising algorithms
had been used due to the versatility of real problems
and the complexity of algorithms (Rolstadas 1989).

Nevertheless, a forecasting model is needed. As an
alternative to optimising algorithms, simulation can
be adopted for modelling the future behaviour of the
manufacturing systems. Simulation does not generate
an optimal solution on its own, but it demonstrates
the trend under a series of control policies. It is
notable that nearly all of the commercial scheduling
tools presently available aimed at short-term plan-
ning of shop floor materials flow make use of simu-
lation techniques (Dwyer 1990).

It must be emphasized that the primary usage of
simulation is the evaluation of a control option. The
quality of the decisions derived from such mech-
anisms is dependent on the quantity and quality of
the candidate actions (Wu and Wysk 1988).

At the Havant manufacturing site of IBM (UK) L.td,
a pilot project termed Real-time Interactive Control
System (RETICS) has been carried out to investigate
the feasibility of using simulation as a real-time pro-
duction control tool. Subsequent attempts have
been made to form a conceptual model of
Knowledge-based Interactive Real-time Control
System (KIRCS) with an emphasis on the use of the
Expert System technology to direct the search of
control actions. The conceptual model of KIRCS
and the functions of each module are described
below.

2 CONCEPTUAL MODEL

As with the general structure of an expert system,
KIRCS consists of an inference engine, a knowledge
base and a data base. In addition, a simulation
module is adopted to assist in the evaluation of deci-
sion alternatives.

To convey the conceptual model of KIRCS in a
formal syntax, IDEF0 (Marca and McGowan 1988)
is used to define its information flow as in I'igure 2.
The expert system performs two functions, i.e. com-
paring achievement with requirement and analysing

10

alternative actions. The simulation model forecasts
the future behaviour of the system under control.

Scheduted Bwironmental Control objectives
smiey constreints
Jagataolowance |
Red-4ma [—— I
dut Compars — =
achigvement ‘Weming
o ot [T o report,_
B } " | probiem
report
Request for
Problem i, [L,, further Information
o - O | OO . L.l s
Knowledge Base = e
actions 2 Aotions,_
,T,, £] 6
logio,
Declsion-making A |
Knowladge Base Foreoast Animation
future stete roporty,.
Simuletion Model
Simutation resutts

I'ig. 2 KIRCS information flow chart in IDETF0

2.1 Inference Engine

KIRCS can be used manually by an end-user or
driven by real-time data at a certain action time. In
cither case, KIRCS collects real-time data from the
process and compares it with the scheduled states.

If the objective criteria are not met, the expert
system evaluates if the deviation is within a
boundary, beyond which the rules to be analysed in
the knowledge base would not be able to cope with.
When KIRCS fails to identify an action rule, it will
stop and request for external actions. When the
deviation from the objective criteria is detected
which falls into the boundary, the expert system
starts to analyse alternative actions.

The analysis of actions involves searching the deci-
sion rules until those whose conditions match the
deviation are found. If no rules are matched, KIRCS
stops and requests further information. The actions
of all the matched rules are converted into simu-
lation control logic.

If the objective criteria have been achieved but a key
state parameter is found to be out of normal state,
the expert system gives a warning report and acti-
vates the simulation model to predict the future
achicvement of the objective criteria. In KIRCS,
only the objective criteria performance are used to
direct the scarch of decision rules (see 2.2 Know-
ledge Basc). Also, if all the deviations are within an
allowance (sce 2.3 Data Base), the system behaviour
is regarded as normal and no action is taken. In this
case, KIRCS stops and waits for next action time.

The simulation model is updated by real-time data
and run under each control action. The simulation
results are then compared with the scheduled states.
If the results of at least one simulation run have
achicved the objective criteria, the actions are recom-

