Topics in chemical engineering Volume 8

THREE-PHASE SPARGED REACTORS

edited by K. D. P. Nigam and A. Schumpe

GORDON AND BREACH PUBLISHERS

Three-Phase Sparged Keactors

edited by K.D.P. Nigam

Department of Chemical Engineering, Indian Institute of Technology, Delhi, India

and A. Schumpe

Institüt für Technische Chemie, Technische Universität Braunschweig, Germany

GORDON AND BREACH PUBLISHERS Australia • Canada • China • France • Germany • India • Japan Luxembourg • Malaysia • The Netherlands • Russia • Singapore Switzerland • Thailand • United Kingdom Copyright © 1996 by OPA (Overseas Publishers Association) Amsterdam B.V. Published in The Netherlands under license by Gordon and Breach Science Publishers SA.

All rights reserved.

No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, without permission in writing from the publisher. Printed in Singapore.

Emmaplein 5 1075 AW Amsterdam The Netherlands

British Library Cataloguing in Publication Data

Three-phase Sparged Reactors. - (Topics in Chemical Engineering, ISSN 0277-5883; Vol. 8) I. Nigam, Krishna D. P. II. Schumpe, Adrian III. Series 660.283

ISBN 2-88124-909-4

Three-Phase Sparged Reactors

_

Topics in Chemical Engineering

A series edited by R. Hughes, University of Salford, UK

Volume 1	HEAT AND MASS TRANSFER IN PACKED BEDS by N. Wakao and S. Kaguei
Volume 2	THREE-PHASE CATALYTIC REACTORS by P.A. Ramachandran and R.V. Chaudhari
Volume 3	DRYING: Principles, Applications and Design by Cz. Strumillo and T. Kudra
Volume 4	THE ANALYSIS OF CHEMICALLY REACTING SYSTEMS: A Stochastic Approach by L.K. Doraiswamy and B.K. Kulkarni
Volume 5	CONTROL OF LIQUID-LIQUID EXTRACTION COLUMNS by K. Najim
Volume 6	CHEMICAL ENGINEERING DESIGN PROJECT: A Case Study Approach by M.S. Ray and D.W. Johnston
Volume 7	MODELLING, SIMULATION AND OPTIMIZATION OF INDUSTRIAL FIXED BED CATALYTIC REACTORS by S.S.E.H. Elnashaie and S.S. Elshishini
Volume 8	THREE-PHASE SPARGED REACTORS edited by K.D.P. Nigam and A. Schumpe

This book is part of a series. The publisher will accept continuation orders which may be cancelled at any time and which provide for automatic billing and shipping of each title in the series upon publication. Please write for details.

此为试读,需要完整PDF请访问: www.ertongbook.com

Introduction to the Series

The subject matter of chemical engineering covers a very wide spectrum of learning and the number of subject areas encompassed in both undergraduate and graduate courses is inevitably increasing each year. This wide variety of subjects makes it difficult to cover the whole subject matter of chemical engineering in a single book. The present series is therefore planned as a number of books covering areas of chemical engineering which, although important, are not treated at any length in graduate and postgraduate standard texts. Additionally, the series will incorporate recent research material which has reached a stage where an overall survey is appropriate, and where sufficient information is available to merit publication in book form for the benefit of the profession as a whole.

Inevitably, with a series such as this, constant revision is necessary if the value of the texts for both teaching and research purposes is to be maintained. I would be grateful to individuals for criticisms and for suggestions for future editions.

R. HUGHES

Preface

This book is a comprehensive reference text, concentrating on nonagitated three-phase reactors with fluidized solids (*three-phase sparged reactors*), particularly bubble column slurry reactors and three-phase fluidized beds. It provides information on the design and operation of gas/liquid/solid reactors.

Part I covers the fundamental aspects of fluid flow, together with heat, mass and momentum transfer, relevant to all reactors. Along with state-of-the-art reviews, experimental methods for the determination of the design parameters are addressed. While this part is restricted to three-phase sparged reactors, additional reactor types are considered in the case studies in Part II, which is concerned with the analysis of a number of commercially important systems. These contributions have been compiled by authors acting as consultants, or working in industry. The practical examples in Part II of the book illustrate the combination of reaction-specific microkinetics with the macrokinetics derived from Part I.

This book is intended both as a reference text, and to provide an update on three-phase reactor design methodology for industrial and academic researchers.

List of Contributors

Abraham, M.A.	The University of Tulsa, Tulsa, Oklahoma, USA
Bachal, S.M.	Indian Institute of Technology Bombay, Bombay, India
Bhaskarwar, A.N.	Indian Institute of Technology Delhi, New Delhi, India
Bhattacharya, S.	Engineers India Limited, Haryana, India
Cerro, R.L.	The University of Tulsa, Tulsa, Oklahoma, USA
Chopra, S.J.	Engineers India Limited, Haryana, India
Deckwer, WD.	GBF – National Research Centre for Biotechnology, Braunschweig, Germany
Dudokovic, M.P.	Washington University, St. Louis, Missouri, USA
Ghosh, P.	Indian Institute of Technology Delhi, New Delhi, India
Juvekar, V.A.	Indian Institute of Technology Bombay, Bombay, India
Ledakowicz, S.	Technische Universität Bergakademie, Freiberg, Germany
Mills, P.L.	DuPont Company, Wilmington, Delaware, USA

xvi	LIST OF CONTRIBUTORS
Narasimhan, C.S.L.	Indian Oil Corporation Ltd., Faridabad, India
Nigam, K.D.P.	Indian Institute of Technology Delhi, New Delhi, India
Poncin, S.	Laboratoire des Sciences du Génie Chimique CNRS ENSIC INPL, Nancy, France
Praveen, V.V.	Indian Institute of Technology Delhi, New Delhi, India
Ramachandran, K.B.	Indian Institute of Technology Delhi, New Delhi, India
Ramachandran, P.A	Washington University, St. Louis, Missouri, USA
Schumpe, A.	Technische Universität Braunschweig, Braunschweig, Germany
Sen, P.K.	Engineers India Limited, Haryana, India
Shah, Y.T.	Drexel University, Philadelphia, Pennsylvania, USA
Suh, IS.S.	Konkuk University, Seoul, Korea
Turner, J.R.	Washington University, St. Louis, Missouri, USA
Verma, R.P.	Indian Oil Corporation Ltd., Faridabad, India
Wild, G.	Laboratoire des Sciences du Génie Chimique CNRS ENSIC INPL, Nancy, France

xvi	LIST OF CONTRIBUTORS
Narasimhan, C.S.L.	Indian Oil Corporation Ltd., Faridabad, India
Nigam, K.D.P.	Indian Institute of Technology Delhi, New Delhi, India
Poncin, S.	Laboratoire des Sciences du Génie Chimique CNRS ENSIC INPL, Nancy, France
Praveen, V.V.	Indian Institute of Technology Delhi, New Delhi, India
Ramachandran, K.B.	Indian Institute of Technology Delhi, New Delhi, India
Ramachandran, P.A	Washington University, St. Louis, Missouri, USA
Schumpe, A.	Technische Universität Braunschweig, Braunschweig, Germany
Sen, P.K.	Engineers India Limited, Haryana, India
Shah, Y.T.	Drexel University, Philadelphia, Pennsylvania, USA
Suh, IS.S.	Konkuk University, Seoul, Korea
Turner, J.R.	Washington University, St. Louis, Missouri, USA
Verma, R.P.	Indian Oil Corporation Ltd., Faridabad, India
Wild, G.	Laboratoire des Sciences du Génie Chimique CNRS ENSIC INPL, Nancy, France

Acknowledgements

We are thankful to Professor W.-D. Deckwer for his suggestions during the preparation of the book. We also thank all contributors for their cooperation.

One of us (K.D.P.N.) would like to thank Professor M.M. Sharma for the encouragement and the facilities provided to work in this area. He would also like to thank the Alexander von Humboldt Foundation for the award of a fellowship that provided an opportunity to interact with Professor Deckwer and his group.

Not the least, we are also grateful to our wives, Archana Nigam and Gabi Schumpe, for their patience when this book took much more of our time than promised.

We have enjoyed writing our contribution and editing this book and hope that the readers will benefit from this compilation.

Contents

Introduction to the Series	xi
Preface	xiii
List of Contributors	xv
Acknowledgements	xvii

PART I: FUNDAMENTALS

INTRODUCTION		3		
CH/	PTER	1	HYDRODYNAMICS	11
			G. Wild and S. Poncin	
	Notati	on		12
1.1	Classi	fica	tion of Three-Phase Sparged Reactors	13
			g Techniques	20
			lobal measurements	22
	1.2.2	L	ocal measurements	36
1.3	Hydro	dyr	namic Characteristics of Three-Phase	
	Fluidiz			41
	1.3.1	V	ariables affecting the hydrodynamics	41
			linimum fluidization velocity	50
			low regimes	58
			hase holdups and mixing	60
			onclusion	80
1.4	Hydro	dyr	namic Characteristics of Slurry Reactors	81
			ffective properties of a slurry	82
			low regimes	89
	1.4.3		ritical gas velocity for complete suspension	
		0	f particles	93
	1.4.4		as holdup	94
			fixing and flow patterns	108
1.5	Conclu		U 1	112

CONTENTS	

CHA	PTER	2 HEAT TRANSFER IS. Suh and WD. Deckwer	113
	Notatio)n	114
2.1	Introdu	iction	116
	2.1.1	Gas-liquid-solid reactions	118
		Heat generation of typical gas-liquid reactions	120
	2.1.3	Methods of heat removal	121
2.2	Experi	mental Methods	124
	2.2.1	Overall heat transfer coefficient	124
	2.2.2	Wall heat transfer coefficient	126
2.3	Experi	mental Investigations	128
	2.3.1	Slurry bubble columns	128
	2.3.2	Three-phase fluidized beds	131
2.4	Theore	tical Approach	154
	24.1	Slurry bubble columns	154
	2.4.2	•	158
2.5	Conclu		166
CHA	PTER	3 MASS TRANSFER A. Schumpe and K.D.P. Nigam	169
	Notatio	on	170
3.1	Introdu	action	173
3.2	Experi	mental Techniques	176
	$3.\bar{2.1}$	Physical methods	177
		3.2.1.1 Dynamic methods	177
		3.2.1.2 Steady-state methods	186
	3.2.2	Chemical methods	193
		3.2.2.1 Volumetric mass transfer coefficient	193
		3.2.2.2 Specific interfacial area	195
3.3	Bed/W	all Mass Transfer	201
3.4	Liquid	/Solid Mass Transfer	205
3.5	Gas/Li	quid Mass Transfer in Three-Phase Fluidized Beds	222
	3.5.1	Effects of particle properties	223
	3.5.2	Effects of liquid properties	242
3.6		quid Mass Transfer in Slurry Reactors	245
	3.6.1	Inhomogeneous particle distribution	260
	3.6.2	Particle–bubble interaction	263
	3.6.3	Enhancement by a micro-phase	277
	3.6.4	Effect of suspension viscosity	290
3.7	Specia	l Reactor Types	294
3.8		isions and Recommendations	300

CONTENTS

PART II: ANALYSIS OF PRACTICAL SYSTEMS

CHA	PTER		
		PRINCIPLES FOR BIOPROCESSES	303
		P. Ghosh, K.B. Ramachandran and V.V. Praveen	
	Notati	on	304
4.1	Introdu		305
4.2		fication of Fluidized Bed Bioreactor	306
4.3		n Formation	308
4.4	Fluidiz	zation Principles	310
	4.4.1	Minimum fluidization velocity	311
	4.4.2	Terminal or free settling velocity	313
	4.4.3	Bed stratification	314
	4.4.4	Bed expansion	315
4.5		s Kinetic Modelling	316
		External mass transfer resistance	317
	4.5.2		318
		Effectiveness factor for a bioparticle	320
	4.5.4	L .	
		on particle effectiveness factor	321
4.6		or Models	322
	4.6.1	Axial dispersion model	322
	4.6.2	Concentration profile without dispersion	324
4.7		n Detachment	324
4.8	Applic		326
4.9	Worke	d Examples	329
CHA	PTER	IN SLURRY BUBBLE COLUMN	
		REACTORS: ANALYSIS OF REACTOR	
		PERFORMANCE USING THE AXIAL	
		DISPERSION MODEL	339
		P.L. Mills, J.R. Turner, P.A. Ramachandran	
		and M.P. Duduković	• • •
	Notati		340
5.1	Introdu		344
5.2		Dispersion Model	347
	5.2.1		348
	5.2.2		354
	5.2.3	Local reaction rate	358
	5.2.4	Variable gas velocity	359
	5.2.5		361
	5.2.6	Design correlations for the model parameters	363

CONTENTS

	5.2.7 Solution of the model equations	368
5.3	Results and Discussion	371
	5.3.1 Comparisons with previous solutions	371
	5.3.2 Flow regime	374
	5.3.3 Effect of gas-liquid contacting patterns	374
	5.3.4 Effect of reactor geometrical parameters	377
	5.3.5 Additional comments	379
5.4	Summary	382
5.5	Conclusions	383
	Acknowledgement	384
5.6	Appendix: Derivation of Equation (5.36)	384
5.7	Supplement: Fischer-Tropsch slurry bubble column	
	reactor axial disposition model and computer code	386
CH/	APTER 6 METHANOL SYNTHESIS	387
	S. Ledakowicz	
	Notation	388
6.1	Introduction	389
6.2	Development of Liquid-Phase Methanol Process	392
6.3	Thermodynamic Considerations	394
6.4	Catalysts	397
6.5	Kinetic Aspects	399
6.6	Designing and Modeling of Slurry-Phase Methanol	
	Reactors	404
6.7	Concluding Remarks	420
CH/	APTER 7 OXIDATION OF PHENOL IN A	
	THREE-PHASE MONOLITHIC	
	FROTH REACTOR	423
	Y.T. Shah, M.A. Abraham and R.L. Cerro	
	Notation	424
7.1	Introduction	426
7.2	Hydrodynamics	428
	7.2.1 Two-phase flow in pipes and capillaries	428
	7.2.2 Motion of long bubbles in capillaries	432
	7.2.3 Slug flow in square capillaries	433
	7.2.4 Cavity flow	439
7.3	Model for a Slug Flow Monolithic Reactor	441
	7.3.1 The annular region	442
	7.3.2 The slug	445
	7.3.3 The bubble	447
	7.3.4 Further simplifications	447
	7.3.5 Simple model	448

viii

	CONTENTS	ix				
7.4	Operation and Performance of a Three-Phase					
	Monolithic Froth Reactor	449				
	7.4.1 Experimental details	452				
	7.4.2 Results and discussion	454				
7.5	Conclusions and Recommendations	459				
	Acknowledgement	460				
CHA	PTER 8 HYDROGENATION OF GLUCOSE					
	TO SORBITOL	461				
	R.P. Verma and C.S.L. Narasimhan					
	Notation	462				
8.1	Introduction	465				
8.2	Process Description	466				
	8.2.1 Continuous process	466				
	8.2.2 Batch process	468				
8.3	Chemistry	469				
8.4	Reaction Kinetics	472				
8.5	Generalised Reactor Model	475				
8.6	Hydrodynamic Aspects and Parameters Estimation	478				
	8.6.1 Continuous slurry bubble column	479				
	8.6.2 Agitated batch slurry reactor	483				
	8.6.3 Liquid-solid mass transfer	484				
8.7	Simplified Model and Typical Parameters	484				
8.8	Design Methodology	488				
	8.8.1 Continuous slurry bubble column	488				
	8.8.2 Agitated batch slurry reactor	491				
8.9	Summary	495				
	Acknowledgement	496				
CHA	PTER 9 CUMENE REACTOR	497				
	V.A. Juvekar and S.M. Bachal	100				
	Notation	498				
9.1	Introduction	500				
9.2	General Process Description	501				
	Chemistry and Reaction Mechanism	507				
9.4	Thermodynamics of the Reactions	511				
9.5	Kinetics of Alkylation and Transalkylation Reactions	512				
9.6	Heat and Mass Transfer at the Gas-Liquid Interface	516				
9.7	Design Considerations	525				
9.8	Mathematical Model for the Cumene Reactor	530				
9.9	Simulation of the Cumene Reactor	536				
9.10	Results of Simulation	540				
9.11	Conclusions 545					

CONTENTS

CHA	APTER 10 MATHEMATICAL MODELLING OF	
	FOAM-BED REACTORS	547
	A.N. Bhaskarwar	
	Notation	548
10.1	Introduction	553
10.2	Hydrodynamics	556
	10.2.1 Basic concepts	556
	10.2.2 Idealization of foam structure	563
	10.2.3 Foam stability	567
	10.2.4 Liquid hold-up profile	576
10.3	Mass Transfer with Chemical Reaction in Foam:	
	Reactor Performance and Design	585
	10.3.1 Homogeneous absorbing liquids	585
	10.3.2 Heterogeneous absorbing media	608
	10.3.3 Design of a foam-bed reactor: Case study of	
	deodorization of effluent of Kraft paper mill	615
10.4	Experimental Investigations: Validation of Theory	618
10.5	Directions of the Current and Future Work	633
СНА	APTER 11 MODELLING FOR LIQUID-PHASE	
	OXIDATION OF HYDROGEN SULPHID	E 637
	S. Bhattacharya, P.K. Sen and S.J. Chopra	
	Notation	638
11.1	Introduction	639
11.2	General Design Considerations	640
11.3	Specific Design Considerations for Autocirculation	
	Reactor	649
	11.3.1 Liquid circulation velocity	652
	11.3.2 Process modeling	658
11.4	Case Study	661
11.5	Computed Gas Concentration Levels	671
11.6	Conclusions	672
Refe	rences	679
Index	X	741