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INTRODUCTION

p-adic L functions are analytical functions of p-adic characters that, one way
or another, interpolate special values of classical (complex) L functions. The first
such examples were the p-adic L functions of Kubota and Leopoldt [K-Le|, interpo-
lating Dirichlet L series. Manin and Vishik [M-V] and Katz [K1] constructed p-adic
L functions which interpolate special values of Hecke L series associated with a
quadratic imaginary field K, in which p splits. (To fix notation write p = pp).
Their work gave p-adic interpolation of the Hasse-Weil zeta function of certain el-
liptic curves with complex multiplication and good ordinary reduction at p (those
whose division points generate abelian extensions of K). The p-adic L function of
Manin-Vishik and Katz is the first object studied in this work.

Our point of view is nevertheless different, and goes back to the two funda-
mental papers [C-W1] and [C-W2] by Coates and Wiles. The program, pursued
by various authors since (see the introduction to chapter II), and which is brought
here to its fullest generality (so we hope), may be summarized in two main steps.

Fix an abelian extension F; of K, and let K, be the unique Z, extension of
K unramified outside p (one of the two factors of p in K). If we assume that F; is
the ray class field modulo fp, where § is an integral ideal relatively prime to p, we
do not lose any generality, and some notation is simplified. We therefore make this
assumption. The p-adic L function, then, is essentially a p-adic integral measure on
G = Gal(F1Kx/K).

Now in the first step we are given a norm-coherent sequence f of semi-local
units in the completion of the tower F, = F;K, at p. Out of each such sequence
we construct a certain measure pg on §. We describe this construction in chapter I.
In the second step, carried out in chapter II, we introduce special global units, the
elliptic units. They come in norm coherent sequences, so we can view them inside
the local units. When the procedure from chapter I is applied to them we obtain

the p-adic L function.



Chapters I and II are carried out in full generality and are also attempted
to be self contained. This results in long tedious computations. The reader who
approaches the subject for the first time is advised to make two simplifying assump-
tions: that K is of class number 1, and that the grossencharacters in question are
unramified at p. These eliminate most of the technical difficulties, yet very little is
lost conceptually. If still confused, one may restrict attention to grossencharacters
of infinity type (k,0). This will only give the interpolation formula for the “one
variable” p-adic L function. We have actually treated this case separately in I1.4,
despite some repetition, to facilitate the reading.

Other results obtained in chapters I and II include a new proof of Wiles’ explicit
reciprocity law, a p-adic analogue of Kronecker’s limit formula, and a functional
equation for the p-adic L function.

The immense interest in Katz’ p-adic L functions arises from their significance
to class field theory (abelian extensions of K) and the arithmetic of elliptic curves
with complex multiplication. In the last two chapters we give a sample of results
in these two directions. Although largely self-contained, these chapters are not
intended to be exhaustive, and several topics are omitted. The selection of material,
and sometimes the method of proof, were influenced by our desire to show how the
results of chapter II are put to use.

Chapter III is mainly concerned with the “main conjecture” in the style of
cyclotomic Iwasawa theory. The fundamental idea is that the zeroes of the p-adic
L function ought to be those p-adic characters of G whose reciprocals appear in the
representation of § on a certain free Z,-module of finite rank. More precisely, this
module X is the Galois group of the maximal abelian p-extension of Fo, which is
unramified outside p. See the introduction to chapter III for more details. We prove
that the Iwasawa invariants of X and the Iwasawa invariants of the p-adic L function
are equal, but we do not go into the recent evidence for this conjecture discovered
by K. Rubin, nor do we give Gillard’s proof of the vanishing of the p-invariant.

While elliptic curves are deliberately kept behind the scene in chapter III, their

arithmetic, and in particular the conjecture of Birch and Swinnerton-Dyer, is the



main topic of chapter IV. First we show how Kummer theory and descent are used
to relate the Galois group previously denoted by X to the Selmer group over Fg.
Then we give a complete proof of two beautiful theorems of Coates-Wiles and of
R. Greenberg. These theorems are generalized here to treat elliptic curves with
CM by an arbitrary quadratic imaginary field, not necessarily of class number 1.
The crucial hypothesis that must be kept is that the division points of the curve in
question generate an abelian extension of K.

Of the topics not considered here, let us mention p-adic heights and p-adic sigma
functions, the work of Perrin-Riou on the algebraic analogue of the conjecture of
Birch and Swinnerton-Dyer [PR1], and her “Gross-Zagier-type” result [PR2]. As
this book goes to press, K. Rubin has announced important new results concerning
the conjecture of Birch and Swinnerton-Dyer. He kindly allowed me to report on
them here, and we refer the reader to his forthcoming papers for details.

The author is well aware of the lack of numerical examples in chapters III
and IV. These would illustrate the theory magnificently, but due to lack of skill in
computing, I was unable to produce any new examples. There is much relevant

numerical data in the paper of Bernardi, Goldstein and Stephens [B-G-S|.






CHAPTER 1
FORMAL GROUPS, LOCAL UNITS, AND MEASURES

Much of the first half of this book is devoted to the construction of p-adic L
functions associated with quadratic imaginary fields. This construction is “formal”
and “local” in the beginning. Only at a later stage results from the theory of
complex multiplication are incorporated. In chapter I we gather those results which
do not deal with elliptic curves. Our tools are formal groups and p-adic measures.
The key result is theorem 3.7, which describes the structure of a certain module
of local units. This module plays a central role in the following three chapters. In
section 4 we prove a version of the explicit reciprocity law in local class field theory,

that will be needed in chapter IV.

1. RELATIVE LUBIN-TATE GROUPS

1.1 Let R be a commutative ring with identity. For our purpose a (commutative)
one dimensional formal group law over R is a power series ' € R[[X,Y]], satisfying
the following axioms.

(i F
(i) F
(iii)

)

(iv

(X,Y) = X + Y mod deg 2

(X,0) = X = F(0,X)

F(X,F(Y, Z)) F(F(X,Y),Z) (associativity)
F(X,Y) = F(Y,X) (commutativity).

Il

We use the notation f = g mod deg n to mean that f — g involves only
monomials of total degree not less than n. It can be shown ([Haz] 1.1.4) that there
exists a unique power series ¢(X) € R[[X]] such that F(X,:(X)) = 0.

Let A be an R-algebra and a an ideal such that A is complete and separated
in its a-adic topology (i.e. A = l'gn A/a™). Then if f,g € a, F(f,g) and



t(f) converge to elements of a. We denote them by f[+]g and [—]f respectively,
and observe that with [+] as addition a becomes an abelian group, written F(a)
(“the a-valued points of F”), to distinguish from the ordinary addition on a. These
remarks apply in particular to A = R[[X]] and a = (X), and to the case where
A = R is a complete local ring and a is its maximal ideal. Almost everything
we shall need about formal groups can be found in the book of Hazewinkel [Haz.
Henceforth we let “formal group” stand for “commutative one-dimensional formal

group law”, unless otherwise specified.

A homomorphism f between two formal groups F and F’ over R is a power se-
ries without constant term such that F'(f(X), f(Y)) = f(F(X,Y)). The collection
Hom/(F, F') of such homomorphisms forms a group with respect to the addition law
of F': (f+¢)(X) = f(X)[+]'¢9(X), and End (F) becomes a ring under composition

as product.

Let R be a domain of characteristic 0, and f € Hom(F,F'). Then f(X) =
aX + (higher terms) and the map f — a = f’(0) is an injective group
homomorphism of Hom(F, F') into R ([Haz] 20.1). When F = F’ this is a ring
homomorphism. We shall write [a]r# or [a]F, or simply [a] instead of f in such
a case. Over the field of fractions K of R all formal groups are isomorphic. Any
isomorphism A : F =~ G, over K (G,(X,Y) = X + Y is the additive
formal group) is called a logarithm of F. If X is normalized so that \'(0) = 1,
then A'(X) € R[[X]]* has coefficients in R ([Haz] 5.8). All these statements are

blatantly false (or void) in non-zero characteristic.

Let F be a formal group over a field of characteristic p > 0. Then [p]r(X) =
X[+]...[+]X (p times) is a power series in X7 with ¢ = p" for some h > 1. The
largest possible h is called the height of F ([Haz] 18.3). If [p]r = 0 F is of infinite
height.

Finally, we shall need the concept of a translation-invariant derivation on F.
This is a continuous derivation D of R[[X]] (over R) satisfying D(f(X[+]Y)) =
Df(X[+]Y), where Y is treated here as a constant for D (i.e. D is extended to



c d

R[[X,Y]] via DY = 0). If R is a domain of characteristic 0, then D = M(X) X

where ¢ € R and A is the logarithm of F, normalized to A'(0) = 1.
The multiplicative formal group G, is given by G (X,Y) = X +Y + XY =
1+X)@1+Y) -1

1.2 Let k be a finite extension of Q,, the field of p-adic numbers. Let O and p be its
valuation ring and maximal ideal. Let the residue field O /p have g elements. Lubin
and Tate introduced an extremely useful class of formal groups defined over O [L-T].
Their handiness stems from the fact that they each possess a special endomorphism
which “lifts” the Frobenius substitution X + X9 in characteristic p. Here we
generalize a little (see [dS1]), and as usual in this theory, focus first on the lifting
of Frobenius, and web the formal group around it.

Let d be a positive integer and k’ the unique unramified extension of k of
degree d. Let k*" be the maximal unramified extension of k, and K its completion.
The Frobenius automorphism (relative to k) ¢ generates Gal(k"" /k) topologically,
and extends by continuity to K. It is characterized by p(z) = z? mod p“" for
allz € OUr. We let O',p’,' denote the corresponding objects for k', so that
' = % Finally let v : K® — Z be the normalized valuation (normalized in
the sense that v(K?*) = Z).

Fix ¢ € k*,v(¢) = d, and consider

Fe = {f € O'[[X]] | f = n"X moddeg 2, Npk(r') = £and f = X7 mod p'}.

Any f in ¥ is going to play the role of an endomorphism lifting Frobenius. Its

differential is f'(0) = ', and its reduction is X9.

1.3 Theorem. For every f € 7 there exists a unique one-dimensional commu-

tative formal group law Fy defined over O’ satisfying F}P o f = f o Fy.

In other words, f € Hom(Ff,F}o). Here, and elsewhere, the superscript ¢
means that we apply ¢ to the coefficients of the power series. Note that F}a € F
too, and F}P = F,(s) (apply ¢ to the equation defining Ff). Whend = 1 we



are in the situation studied by Lubin and Tate. When d > 1 we call Fy a relative

Lubin Tate group (relative to the extension k’/k). For the proof we need a lemma.

1.4 Lemma. Let f,g € % and let Fi(X1,...,X,) be a linear form in
O'[X1,-..,Xn). Suppose f o F; = Ff o (g,...,9) mod deg 2. Then there
exists a unique F € O'[[Xy,...,X,]] satisfying (i) F = F; mod deg 2, (ii)
foF = F? o (g,...,9).

PROOF: (Compare [Se| p. 149). Let f = mX + ...,9g = mX + ....Set
F() = F| and define successive approximations F(™) satisfying (ii) mod deg m + 1
through (m > 2) F(™) = F(m-1) 4 F_ where F,, is homogeneous of degree

m. For this we need

f o (F('"'l) + Fm) (F(m"‘l) + Fm)p o gmoddegm + 1

or

f o Flm-1) mF, = Fim=le , g + ' FZ.

Let ¢t be the homogeneous part of degree m of F(m=1¢ o g — f o F(m=1) Since
Fm—le o g = plm-De(x? ... X2 = (Fm1) = f o F(™1) mod ¢,
t = 0 mod p'. We have to find F,, satisfying

-1_m =1,
F, — ni ' n'Ff = =] t.

This is possible because m > 2 and O’ is complete (proceed by induction mod p'").
Setting F = Y o-_, Fm concludes the proof.
PROOF OF THEOREM 1.3: In the lemma,let f = gand F; = X; + X,. We
have to show that Fy = the resulting F, is a formal group law. This is done by
repeated application of lemma 1.4 and is left as an exercise (or look it up in [Se]
p. 150).

Let F be the reduction of Fy, i.e. the formal group over O’/p’ obtained by
“reading Fy modulo p'”. It is easily verified that F is of height [k : Q;). By abuse
of language we refer to it as the height of Fy too.



