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Preface

A large number of problems require the optimization of multiple criteria. These crite-
ria are often non-commensurate and sometimes conflicting in nature making the task
of optimization more difficult. In such problems, the task of creating a combined opti-
mization function is often not easy. Moreover, the decision procedure can be affected
by the sensitivity of the solution space, and the trade-off is often non-linear. In real life
we traditionally handle such problems by suggesting not one, but several non-dominated
solutions. Finding a set of non-dominated solutions is also useful in multistaged opti-
mization problems, where the solution of one stage of optimization is passed on to the
next stage. One classic example is that of circuit design, where high-level synthesis, logic
synthesis and layout synthesis comprise important stages of optimization of the circuit.
Passing a set of non-dominated partial solutions from one stage to the next typically
ensures better global optimization.

This book presents a new approach to multi-criteria optimization based on heuristic
search techniques. Classical multicriteria optimization techniques rely on single criteria
optimization algorithms, and hence we are either required to optimize one criterion at
a time (under constraints on the others), or we are asked for a single scalar combined
optimization function. On the other hand, the multiobjective search approach maps
each optimization criterion onto a distinct dimension of a vector valued cost structure.
A partial order relation is defined on the vector valued costs, and the search algorithm
determines the set of solutions which are non-inferior with respect to the partial order.
Thus each criterion retains its individual identity right through the optimization process.

The multiobjective search paradigm was proposed by Stewart and White in a paper
(JACM,38,1991) where they introduced the notion of best-first search in a vector valued
search space and presented the multiobjective generalization of the classical algorithm
A”. Subsequently, we have developed the foundations of multiobjective search on three
different problem representation domains, namely, state space search, problem reduction
search, and game tree search. This book is a compilation of our work on these topics.

The contents of this book are as follows. The first two chapters introduce the notion
of multiobjective heuristic search and outline the work of Stewart and White. The
third chapter presents our results on state space search and algorithms for memory
bounded search in multiobjective state spaces. The fourth chapter outlines some of our



applications of multiobjective heuristic search. The fifth and sixth chapters present our
contributions on multiobjective problem reduction search and multiobjective game tree
search respectively.

We acknowledge the financial support of Volkswagen Stiftung, Germany, for the publi-
cation of this book. We are deeply indebted to Professor Wolfgang Bibel for his support
and encouragement. We thank Vieweg Verlag for publishing the book. We have used
ETEX for typesetting.

We are grateful to the Department of Computer Science and Engineering, Indian Insti-
tute of Technology Kharagpur, India, where we did the entire research on multiobjective
heuristic search.
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P P Chakrabarti
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Chapter 1

Introduction

In the past three decades, researchers in the area of heuristic search have focussed on the
central theme of knowledge versus search in some form or the other. The major attention
has been towards quantifying problem specific knowledge in terms of a heuristic evalua-
tion function and developing algorithmic frameworks for solving problems in an efficient
manner. The nature of the heuristic function and its effect on the search mechanism has
been a subject of considerable interest.

Heuristic search techniques have been developed for different problem representations,
such as the state space representation, the problem reduction representation. and game
trees. Classically heuristic search has been studied with two major objectives. The first
has been to understand the relation between heuristic accuracy and search complezity.
The other has been to develop efficient search algorithms for obtaining optimal and sub-
optimal solutions. In the process, heuristic search has been investigated under various
situations. In particular, search has been studied for different types of heurictics such
as admissible heuristics, inadmissible heuristics, non-monotone heuristics and weighted
heuristics. The performance of heuristic search strategies have been analyzed for worst
case and average case behaviors. Variants of the basic approach have been suggested to
improve the performance of the search algorithms under different situations.

Most of the search schemes studied in the past assume that the criterion to be optimized
is single and scalar valued. Consequently it is also assumed that there exists a total order
on the costs evaluated at the various states of the problem. Best-first search algorithms
such as A* [69] use this total order to compare candidate search avenues and determine
the potentially best path.

In this work we study a search framework called the multiobjective search framework,
where the assumption regarding the existence of a total order among the costs is relaxed.
Instead we consider the general situation where only a partial order exists among the
costs. Since the model was originally proposed by Stewart and White [91] for extending
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heuristic search techniques to multicriteria optimization problems, the model has been
named as the multiobjective search model. In the following sections, we briefly describe
the multiobjective framework, and the major contributions of the work.

1.1 Multiobjective Search

Many real world optimization problems have multiple, conflicting non-commensurate ob-
jectives. The task of adequately modeling such problems in a search framework that is
designed for optimizing single scalar functions is by no means easy, and has been the
subject of considerable debate in the past [45]. One popular approach of solving such
problems is to cast them into the conventional search framework after combining the
multiple criteria into a single scalar criterion. However, in most multiobjective problems,
the semantics of the desired solution is context dependent and can be dictated by indi-
vidual preferences. Therefore, the task of constructing the combined evaluation function
in a way so as to preserve the semantics of the desired solution is difficult, and may
require sufficient experience about solving that problem.

The other popular approach of solving multiobjective problems is to optimize one cri-
terion at a time under given constraints on the others. This approach automatically
preserves the semantics of the problem since it allows the multiple dimensions to re-
tain their :ndividual identities. However, one difficulty lies in determining a set of good
constraints, in the absence of which search becomes unduly expensive. Moreover, re-
peatedly searching the same state space by progressively refining the constraints (until a
satisfactory solution is found) increases the search complexity enormously.

The mulsiobjective search model was introduced by Stewart and White [90, 91] as a
unified framework for solving search problems involving multiple objectives. Since mul-
tiple non-commensurate criteria are involved, the solution space is partially ordered and
will, in g neral, contain several non-inferior solutions. Multiobjective search addresses
the task of determining the set of such solutions in the search space. Once the set of non-
inferior solutions are found, standard procedures may be applied to choose the desired
solution [5, 47, 52, 54, 67, 94].

In the multiobjective framework, the costs are modeled by vectors, such that each
dimension of the cost represents a distinct non-commensurate optimization criterion.
The following partial order is used to identify the non-inferior options.

Def # 1.1 Dominance :
Let i1 and ¥> be two K-dimensional vectors. Then i, dominates > iff:

1. i1 is as good as §o in all the K dimensions, and
2. 4, is better than ¥> in at least one of the K dimensions.

where good and better are defined in terms of the scalar valued criteria associated with
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the individual objectives. A vector ¥; is said to be “non-dominated” in a set of vectors Y
if there does not exist another vector §; € Y such that ij; dominates if;. O

A multiobjective search strategy uses the above partial order to eliminate all clearly
inferior alternatives and direct the search towards the set of non-dominated solutions.
The multiobjective heuristic search problem is as follows:

Def # 1.2 Multiobjective Search Problem :

Given:

1. A search space, represented as a locally finite directed graph.

2. A vector valued cost structure, with each dimension representing a distinct
optimization criterion.

3. A heuristic evaluation function that returns a set of non-dominated vector
valued costs for each candidate search avenue. Fach cost is an estimate
of the cost of potential non-dominated solutions which may be obtained
along that search avenue.

Find:
The set of non-dominated solutions in the search space.

In their work [90, 91], Stewart and White presented an algorithm M OA* which is a
generalization of the well known A* algorithm [69] to the multiobjective search frame-

work.
1.1.1 Contributions

We summarize our major contributions in the following sub-sections.

Multiobjective State Space Search

In this work, several interesting results have been obtained in the area of multiobjective
search of ordinary graphs [23, 21]. We briefly highlight the major contributions.

A. Searching under inadmissible heuristics: We have shown that if heuristics are
allowed to overestimate, then no algorithm is guaranteed to find all non-dominated
solutions unless it expands nodes having dominated costs also. This effectively
implies that only brute force search techniques are admissible.
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B. Utility of Pathmax: The use of the pathmaz property to modify non-monotone
heuristics and improve the performance of best-first search strategies such as A*
is well known [25, 66, 10]. In this work, we show that the idea of pathmaz can be
extended to the multiobjective search domain also.

In the single objective search model, it has been shown [25] that the utility of
pathmaz in tree search is confined to pathological problem instances only, that is,
in problem instances where every solution path contains at least one fully informed
non-goal node. We show that in the multiobjective domain pathmaz has a greater
utility, since it can reduce the set of nodes expanded in non-pathological problem
instances as well.

C. Using an induced total order: A characteristic feature of the multiobjective search
problem is the existence of multiple non-dominated search avenues. In this work,
we have investigated the utility of using an induced total order called K-order for
selecting the search path and have obtained the following results:

1. If an induced total order is used to guide the search, then in general it is not
necessary to evaluate all the heuristics vectors at a node. This result is useful
for problems where generating the heuristics are costly.

2. When a best-first memory bounded strategy backtracks, it must back up the
best cost from the pruned space. In the multiobjective search framework, the
pruned space may contain a large number of non-dominated costs. We show
that if an induced total order is used to guide the search then it is possible to
back up only one of these costs and yet guarantee admissibility.

D. New Multiobjective Search Strategies: Two multiobjective search strategies
have been developed.

Algorithm MOA**: By using the concept of pathmaz, an extension of the algo-
rithm MOA* has been developed which is superior in terms of node expansions.
This algorithm called MOA** also uses an induced total ordering for selection.

Algorithm MOMA*0: This is a generalized memory bounded strategy that ex-
pands the same set of nodes as MOA** and operates in linear space. Several
variants of this algorithm have been studied.

Applications

We have modeled three problems using the multiobjective framework and studied the
performance of the search algorithms developed in this work. The first two are well
known problems in the area of VLSI design [18]. The third is a variant of the bin packing
problem. The problems addressed are:

The Operator Scheduling Problem: This problem appears in VLSI high level syn-
thesis [65], where area and delay of a design are two non-commensurate objectives.
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The Channel Routing Problem: This is a problem of VLSI layout synthesis [26],
where the number of tracks (representing area) and the number of vias (representing
delay through a net) are two non-commensurate objectives.

The Log Cutting Problem: This is a variant of the bin packing problem with two
objectives [29]. One objective is to optimize the number of logs being cut to deliver
a set of slices of various sizes. The other is to optimize the number of cutting
patterns (which reflects the number of times the blade positions have to be altered).

The algorithms developed in this work have been applied to the above problems. The
observations obtained from these applications empirically establish the following:

1. If the heuristics are non-monotonic, then the number of nodes expanded is reduced
if pathmaz is used to strengthen the heuristics.

2. Algorithm MOA** is superior to other policies such as ItrA* (that is, iteratively
applying A*) and DFBB (that is, depth-first branch and bound) in terms of number
of node expansions. In the presence of space constraints, the linear space strategy
MOMA*0 is superior to DFBB.

Multiobjective Problem Reduction Search

Popular best-first problem reduction search strategies such as AO* adopt the policy of
expanding only those nodes that belong to potential solution graphs (psg) whose cost is
less than the cost of the optimal solution graph. A natural approach would be to extend
this policy to the multiobjective search framework, where only nodes belonging to non-
dominated cost psgs are expanded. However, in this work we have been able to establish
the following result [19, 22] that presents an entirely different scenario from that of the
single objective problem:

e Given an explicit additive AND/OR graph, the task of identifying a non-dominated
cost psg is NP-hard in general. Several variants have also been shown to be NP-
hard.

Since the complexity of the task of identifying the minimum cost psg in an explicit
single objective additive AND/OR graph is polynomial in the number of nodes in the
graph, the complexity of AO* is polynomial in the number of nodes it expands. In the
multiobjective framework, the above result shows that unless P = NP, there cannot be
any strategy whose complexity is polynomial in @), where @) denotes the set of the nodes
belonging to non-dominated cost psgs. In this background the following algorithm has
been developed for searching AND/OR graphs.
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Algorithm M_Obj*: The proposed algorithm is a best-first strategy that operates in
linear space and has a time complexity of O(T?), where T is defined as follows:

T = ) CARD(P(n))
neqQ

CARD(P(n)) denotes the number of maximal non-dominated psgs P(n) with n as
a tip node.

Search of Multiobjective Game Trees

Current game tree searching methods assume that the merit of a given position of the
game can be evaluated as a single numerical value. In normal two-player games, a MIN-
MAX value [75] is defined, that indicates the best alternative available to a player. Depth-
first algorithms like a-3 pruning [46] and best-first algorithms like SSS* [92] are known
to efficiently determine this MIN-MAX value. These studies have also been extended to
multiplayer games [49].

In the present work, we have studied an interesting variant of the game tree searching
problem where the information available amongst the players is a partial order. The
cost evaluated at every position of the game is modeled as a vector. Each dimension
of the cost vector represents a distinct criterion of merit. The decision making strategy
of a player is defined as a mapping from the set of vector valued outcomes to a totally
ordered set, which is consistent with the partial order. Our contributions [20, 24] are as
follows:

A. Non-inferior sets of outcomes: If the opponent’s strategy is not known, then
corresponding to every strategy of the player, there will be a set of possible out-
comes depending on the strategy adopted by the opponent. We have identified the
necessary and sufficient conditions for a set of outcomes to be inferior to another
set of outcomes. We also show that unless the strategies of both players are known,
it may be necessary to back up all sets of non-inferior outcomes.

B. Dominance Algebra: We have constructed an algebra called Dominance Algebra
to describe the relation between the sets of outcomes backed up at a node. We
have shown that the set of non-inferior options of a player can be represented as a
minimal expression of the proposed algebra.

C. Pruning Conditions: We have identified both deep and shallow pruning condi-
tions for multiobjective game trees. These conditions lead to the construction
of a-expressions and (-ezpressions using dominance algebra, which are somewhat
similar to the a and 8 bounds in a-f pruning.

D. Partial Order o-8: Using the proposed pruning conditions, a partial order search
strategy has been developed on lines similar to the a-8 strategy for conventional
game trees.
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1.2 Organization of the book

The book is organized as follows.

Chapter 2: Chapter 2 describes the multiobjective search model in detail and presents
previous work on multiobjective heuristic search that forms the background of our
work. The chapter describes the multiobjective generalization of A* proposed by
Stewart et al [91].

Chapter 3: Our contributions in multiobjective state space search is presented in this
chapter. The utility of using pathmaz in the multiobjective domain is shown. The
idea of using an induced total order (called K-order) is introduced. Based on
these, the algorithm MOA** is presented. Issues related to inadmissible heuristics
are considered. The problem of multiobjective state space search under memory
constraints is addressed. A recursive linear space best-first multiobjective search
strategy MOMA*0 is presented. Several variants of the proposed algorithm are
suggested.

Chapter 4: This chapter contains the modeling and implementation of three practical
problems using the multiobjective model.

Chapter 5: Multiobjective problem reduction search has been studied in this chapter.
We prove that the problem of identifying a non-dominated cost psg is NP-hard
in general. Strategies for solving the problem under such situations lead to the
development of the search algorithm M Obj*.

Chapter 6: This chapter concerns multiobjective game tree search. The chapter an-
alyzes the semantics of the partial order game tree search problem. The idea of
using Dominance Algebra to represent the options of a player is introduced, follow-
ing which the partial order pruning conditions are identified. The chapter concludes
by presenting a partial order a-8 pruning strategy.

Chapter 7: The conclusion of the book is presented in this chapter.



