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PREFACE
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0 Growth and change are two characteristics long asso-
ciated with the electronics industry. As applications of
ever more sophisticated integrated circuits and other sol-
id-state devices extend farther into such markets as appli-
ances, photography, automobiles, and home entertain-
ment, the electronics engineer is faced with a growing
challenge to innovate and develop more advanced prod-
ucts with higher performance and quality.

The task is awesome, but this volume of novel circuits
and software should help. It is a collection of the creative
solutions developed by readers of Electronics for specific
design problems and offered for public consumption in
Designers’ Casebooks and Software Notebooks from mid-
1980 through the end of 1982. Over 300 pages of
thought-provoking ideas contain speedy answers for short-
term projects and stimulating new wrinkles for long-term
programs. O
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1. AMPLIFIERS

Pair of pnp/npn transistors
form high-voltage amplifier

by H. F. Nissink

Electrical Engineering Department, University of Adelaide, Australia

This simple high-voltage amplifier circuit provides a
large output voltage swing with low-current consumption
and uses only a few components. Its 280-volt regulated
supply produces an unclipped output of up to 260 v peak
to peak. In addition, rise and fall times of the output for
a square-wave input are 150 nanoseconds, and the no-
load supply current is only 4 milliamperes.

The principle behind this circuit is just a simple tran-
sistor amplifier (a) employing collector feedback

through resistor Rr. The dc output is approximately
Vi XRe/R;. The circuit has an active pull-down action,
with pull-up through R,. However, if R, is replaced with
a pnp transistor in a similar circuit, the pull-up and
pull-down are through the transistor.

This substitution is the basis for the circuit in (b). Its
output-voltage level is theoretically determined by the
300-kilohm and 1.3-kQ resistors and thus the ac circuit
gain is approximately 300 kQ/10 k@ = 30. The power
supply (£ 10 v dc) for the current amplifier A, driving
2N5416 is isolated from the supply for A,, which is
driving the 2N3439.

The circuit has an input impedance of 5 kQ and an
output impedance of 2.4 kQ. For the component values
shown, the actual gain measures about 27, and the
output over the frequency range of 1 kilohertz to 300
kHz is 260 v peak to peak (without clipping) and 100 v
peak to peak at 1 megahertz. Because the amplifier is
not short-circuit protected at the output, the regulated

Vee power supply is limited by the current. This high-voltage
amplifier may drive capacitive-type transducers and be
] Ra used for several other applications. O
>
~— Vour = i - .
R (Re/R1)Vie High-voltage amplifier. A simple transistor amplifier (a) employs
AAA— 4 collector feedback with Rr. Resistor R; is replaced by a circuit similar
i to (a) but with a pnp transistor to form the basis for a high-voltage
= 1 amplifier (b). The current amplifiers A; and A, driving 2N5416 and
i 2N3439 use separate power supplies of + 10 V dc.
(a)
< * Ve =280 V
Z2uF 2 0.1uF L 10.8¢
500 Vv : 8
:T[ 1.3k +10V TANTALUM
1,2
10k A
— Loz D> 2N5416
0.1uF CURRENT N
400 V %7 AMPLIFIER
-0V
NV
300 k2
+——— ———outrpur
0.1uF
300 k2 1,000 V
+10V
1,2
10 k2 A 4
INPUT ——w\ o . D> 1) onaess
0.1uF " CURRENT
400 V | 67 AMPLIFIER
; 13kQ by .
0.1uF 109
) TANTALUMT




Dual-function amp chip
simplifies many circuits

by Jim Williams
National Semiconductor Corp., Santa Clara, Calif.

Various circuits that combine low cost, single- or dual-
supply operation, and ease of use can easily be built with

comparators and operational amplifiers like National
Semiconductor’s LM339 and LM324 because of their
general applicability to a wide range of design problems.
Now circuit complexity can be reduced even further with
up-and-coming dual-function devices like the LM392,
which put both a comparator and an op amp on one chip.
Besides allowing a degree of flexibility in circuit function
not readily implemented with separate chips, this device
retains simplicity at low cost. The building of such
circuits as a sample-and-hold circuit, a feed-forward
low-pass filter, and a linearized platinum thermometer is

SIGNAL
INPUT
+5V
45V ®
10 k2 47k
47kQ
LM385 1k Q, !
2N2369
47kQ =
1N4148 — Q, MY
04 _
LM 392
DUAL AMPLIFIER- —-@ out
3.3k 2 COMPARATOR
> 0.01 uF == 2N2369 ©®
POLYSTYRENE
27kQ

*1% METAL FILM

1. Compact sampl'br. A comparator and op
amp chip consolidates a sample-and-hold
circuit, which utilizes only one supply, has
virtually zero gain error, and will not self-

trigger. Owing to the configuration,

device does not have to rely on the hold

cycle, so that the circuit is simplified.

the

COMMAND
1=SAMPLE
0=HOLD

A=10V/DIV ————»

B=2V/DIlV ———»

c=2Vv/DIlV ———>

D=2V/DIlV ———>»

E=2V/DIV —»

A, B, CHORIZONTAL = 20 ps/DIVISION

D, E HORIZONTAL = 1ms/DIVISION




discussed here in the first of two articles.

The circuit in Fig. 1 is an unusual implementation of
the sample-and-hold function. Although its input-to-
output relationship is similar to standard configurations,
its operating principle is different. Key advantages
include no hold-step glitch, essentially zero gain error
and operation from a single 5-volt supply.

When the sample-and-hold command pulse (trace A)
is applied to transistor Qs, it turns on, causing Q.’s
collector to go to ground. Thus the output sits at ground.
When the command pulse drops to logic 0, however,. Q,
drives a constant current into the 0.1-microfarad capaci-
tor (trace B). At the instant the capacitor ramping
voltage equals the signal input voltage, comparator C,
switches, thereby causing transistor Q, to turn off the
current source. Thus the voltage at Q4’s collector and
A/’s output (trace C) will equal the input.

Q: ensures that the comparator will not self-trigger if
the input voltage increases during a hold interval. If a
dc-biased sine wave should be applied to the circuit
(trace D), a sampled version of its contents will appear
at the output (trace E). Note that the ramping action of
the current source, Qs, will just be visible at the output
during sample states.

In Fig. 2, the LM392 solves a problem common to

filters used in multiplexed data-acquisition systems, that
of acquiring a signal rapidly but providing a long filter-
ing time constant. This characteristic is desirable in
electronic scales where a stable reading of, for example,
an infant’s weight is desired despite the child’s motion on
the scale’s platform.

When an input step (trace A) is applied, C,’s negative
input will immediately rise to a voltage determined by
the setting of the 1-kilohm potentiometer. C,’s positive
input, meanwhile, is biased through the 100 K —0.01 F
time constant, and phase lags the input. Under these
conditions, C,’s output will go low, turning on Q;.

This action causes the capacitor (trace B) to charge
rapidly up to the input value. When the voltage across
the capacitor equals the voltage at C,’s positive input,
Cv’s output will go high, turning off Q,. Now, the
capacitor can only charge through the 100-kQ resistor
and the time constant must therefore be long.

The point at which the filter switches from the short to
the long time constant is adjustable with the potentiome-
ter. Normally, this pot will be set so that switching
occurs at 90% to 98% of the final value (note that the
trip point is taken at about the 70% point in the photo so
that circuit operation may be easily seen). A, provides a
buffered output. When the input returns to zero, the

A=1V/DIV —»

B=1V/DIV —

CUT-IN
INPUT ADJUST
@ 1k
10kQ
1k
2N2907 10kQ
1N933 & 100k A
0
@ ﬂ_: 0.01 uF

2. Feedforward. This simple low-pass filter
provides sharp acquisition and long decay,
so that it is perfect for multiplexed data
systems and electronic scales for infants. Its
time constant is adjustable with the potenti-
ometer and is typically set to 90% to 98% of

the full input value.
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3. Tracking thermals. This platinum RTD thermometer has 99% accuracy over the 0°-to-500°C range. C, derives the breakpoint change in
A/'s gain for sensor outputs exceeding 250°C, compensating for the sensor’s nonlinearity. Current through the 220-kQ resistor shifts A,’s
offset voltage, in effect preventing glitches at the breakpoint. The instrument is calibrated only at two points with a decade resistor box.

1N933 diode (a low forward-drop type), provides rapid
discharge for the capacitor.

In Fig. 3, the LM392 is used to provide gain and
linearization for a platinum resistor-temperature device
in a single-supply thermometer circuit. This one mea-
sures from 0°C to 500°C with +1° accuracy.

Q: functions as a current source that is slaved to the
3.9-v reference. The constant-current-driven platinum
sensor consequently yields a voltage drop that is propor-
tional to its temperature. A, amplifies the signal and
provides the circuit output.

Normally, the slightly nonlinear response of the sensor
would limit the circuit accuracy to about +3°C.
C, compensates for this error by generating a breakpoint
change in A/’s gain at sensor outputs corresponding to

temperatures exceeding 250°C. Then, the potential at the
comparator’s positive output exceeds the potential at the
negative input and C,’s output goes high. This turns on
Q:, which shunts A,’s 6.19-kQ feedback resistor and
causes a change in gain that compensates for the sensor’s
slight loss of gain from 250° to 500°C. Current through
the 220-kQ resistor shifts the offset voltage of A; so no
discernible glitch will occur at the breakpoint.

A precision decade box should be used to calibrate this
circuit. Once inserted in place of the sensor, it is adjusted
for a value of 1,000 ohms and a 0.10-V output by means
of resistor R,. Next, its resistance is set to 2,846 Q
(500°C) and its gain trim control adjusted for an output
of 2.6 v. These adjustments are repeated until the zero
and full-scale readings remain fixed at these points. [




Feedback reduces offset
in wideband video ampilifiers

by Alan Cocconi
California Institute of Technology, Pasadena, Calif.

Wideband video amplifiers such as the LM733 generally
have large input offset voltages that, when multiplied by
their gain, can result in unacceptably high dc offset at

the output. This undesirable effect can be reduced by
feedback by means of a low—input-offset integrator.

As shown in (a), summing resistors R, and R, are:
selected so that the input to the integrator is proportional
to the video amplifier’s input offset voltage. The integral
feedback drives the video amp’s input offset to zero,
leaving only the low offset of the integrator (which can
be trimmed to zero) to appear at the amplifier output.

A practical implementation of the approach is given in
(b). The integrating operational amplifier, a CA3140,
was chosen for its low input offset voltage. Here, the
IN4371 zener diode and the 2N2222 transistor, in an
emitter-follower configuration, are required to ensure

2= AY-XV L ace orrser) that the output can go down to 0 volt, since the 733 video
Vour = —A(Vy amp suffers from the restriction of a minimum positive
Vin *Viow orrser) | output voltage. a
Ry
1 (VN +
Vout/a) /— Va= ‘KszOFFSET (VIDEO)
Ky = Ro/(Ry + Ry) » b i
Ry INTEGRATOR Ry/Ry = 1/A -
+6V FREQUENCY
(a) 2k GAIN m q
VIDEO 2N2222
AMPLIFIER 1N4371 %
21V
Vin AN\ L
209 S 2k
-6V 1
510 Q 1kQ Vour =15 Vjy
% MV
10k L
LOW- 200
FREQUENCY
GAIN
100 k2 -
AAN sV
Reducing offset. The offset voltage of a wideband video amplifier
can be reduced almost to zero if a resistor-scaled feedback integra-
(b tor is applied (a). Practical implementation (b) adds a zener diode
and an emitter follower in order to push the output of LM733, which
has a minimum positive output voltage, down to zero.

Power-sharing bridge circuit
improves ampilifier efficiency

by Jim Edrington

Texas Instruments Inc., Austin, Texas

This linear bridge amplifier offers several advantages in
driving motors and servo systems, including obtaining
maximum efficiency with a single power supply and with
dc coupling, which as a result reduces circuit complexity.
Most notable, however, is that the four transistors in the
amplifier will equally share load currents, as well as
simplifying the drive requirements. These factors permit
lower-cost transistors to be applied and allow their heat-
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sink requirements to be reduced.

Shown in (a) is one half of the bridge-type circuit,
which illustrates the amplifier’s operation. Positive input
excursions from the driver turn on current sink Q., with
a portion of Q,’s collector current passing through tran-

VeenTer

§ RLoap

R2

sistor Q3. Qs’s current flow causes source transistor Q, to
turn on.

Because the majority of the flow must pass through Q,
and Q, the collector-to-emitter voltage of both transis-
tors must be equal to ensure equal power dissipation.
This voltage-matching requirement is achieved by
clamping the gain of Q, to the voltage at the center of
the load with a zener diode. Thus the virtual center of
the load will be maintained at V../2 and Ve = Ve,
provided R; = R,. The zener diode, D;, must have a
value of V, = (V«/2)—1.4 to meet the requirement for
the reference potential.

Two of these circuits may be readily incorporated into
a full-bridge arrangement, as shown in (b), that is suit-
able for driving electromechanical devices. Adding
diodes D through D; isolate one branch’s functions from
the other. With-this configuration, each branch conducts
for half of the input cycle thereby eliminating virtually
all crossover difficulties.

The isolation diodes will alter the divider’s center
voltage by 0.7 volts, however, and so the value of the

f/

Vin P zener voltage must be slightly changed. In this case, it
will be V, = (V&/2)—1.4+4+0.7 = 11.3 v. In most
applications, selecting the nearest standard zener value

o = = will suffice. a
%V
l
10k é % 10kQ
TIP§45 TIPG45 |
2N2905 2N2905
07k0 ﬁ; 1N5400 1N5400
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> L ~
+
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Divided driver. A rudimentary amplifier (a) may be designed so that Q, and Q; carry equal load on a positive excursion of an input signal,
using a zener diode of suitable value for biasing a load center to cause Vg = Vawce: Combining two such sections in a balanced bridge
arrangement (b) builds a dc-coupled amplifier that is simple, can run from one supply, and can ensure that all amplifiers may handle a
proportionate share of the power. This combination reduces electrical specifications of individual transistors, thereby reducing their cost.
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Knowing gate-charge factor
eases power MOS FET design

by Brian Pelly
International Rectifier Corp., El Segundo, Calif.

Unlike bipolar transistors, power MOS field-effect tran-
sistors are essentially voltage-controlled devices whose
drive circuits are best designed around their gate-charge
factor. Obtaining a measurement of this factor with this
circuit (a) will ease switching-time calculations and, as a
result, reduce drive-component selection to a series of
simple Ohm’s Law equations.

Gate charge comprises both gate-to-source and gate-
to-drain (Miller) capacitances. To measure this charge,
a constant current is supplied to the gate of the device
under test from capacitor C, through regulator diode D, .
In addition, a constant current is established in the drain
circuit by setting the voltage on the gate of power MOS
FET Hexfet 1. The net charge consumed by the gate is
related to the given current and voltage that is in the
source-to-drain path.

The graph in (b) represents gate voltage versus gate
charge in nanocoulombs. It shows exactly when the
gate-to-source and gate-to-drain capacitances take on
charge. The first voltage rise charges the gate-to-source
capacitance and the flat portion charges the gate-to-

Charge. The gate-charge factor, measured with test circuit (a), is the
total charge that must be supplied to the gate to switch a given drain
current and voltage. The gate voltage versus gate charge (b) for
Hexfet IRF 131 shows that the total charge consumed by the gate

drain capacitance. At the second voltage rise, both
capacitances are charged to a level that can switch the
given voltage and current.

Although the second voltage rise indicates the point at
which the switching operation is completed, the design
safety margin requires that the drive-voltage level
applied to the gate be slightly higher than the voltage
that is required to switch the given drain current and
voltage. Since gate charge is the product of the gate
input current and the switching time, a designer can
quickly develop a drive circuit that is appropriate for the
switching time required. ad
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Dynamic depletion circuits
upgrade MOS performance

by Clay Cranford, BM Corp.,
System Communications Division, Research Triangle Park, N. C.

In the design of MOS integrated circuits, the need
frequently arises for an efficient, low-power driver to
charge and discharge high-capacitance loads, be they on
chip or off. Standard driver circuits include either
enhancement-depletion inverters or inverters with push-
pull output stages. However, both suffer from high input
capacitance, and with a push-pull driver the high-state
output voltage is limited to a threshold-voltage drop
below the power-supply potential. Clocked driver circuits
cut power dissipation, but chip area must be provided for
clock-signal generation or routing or both.

Two new circuit solutions include the dynamic deple-
tion-mode driver (Fig. 1) and the active bootstrap driver
(Fig. 2). The first takes advantage of the high conduc-
tance of a depletion-mode device under high gate bias.
The output can be charged to the full power-supply
voltage, Vpp, and dc power is reduced by limiting the low
output-level current drain. The idea behind the approach
is to charge a bootstrap capacitor, Cg, and then redis-
tribute that capacitor’s charge when the output is being
driven to its high level.

In Fig. 1, transistor Qs serving as the bootstrap capaci-
tor is charged to Vpp when the input is low. Q4 is in a
low-conductivity state and Q; and Qs are turned on,

causing the gate of Q, to be held near ground. As the
input rises, the charge on Cg is redistributed between Cg
and the gate of Q; via Q4. At this point, Q; and Qs turn
off (Q; has functioned as the dynamic depletion-mode
device, switching between conductive and nonconductive
states). Device Q- is switched to its linear region and Qs
has turned off, charging the output to Vpp.

In the active bootstrap technique (Fig. 2), a voltage-
bootstrapping circuit and a power-down feature provide
a large amount of overdrive and a reduced output-low
power dissipation, respectively. The operation of this
circuit also has several steps.

With the input low, node 1 is high. Qs is turned off
and Q; turned on; consequently, node 3 is low and driver
Qs shuts off. Since Qs can be made physically long, its
current can be limited to a negligible amount. This
accounts for the minimal output-low current.

When the input is raised, Qs turns on, and after one
inverter delay, Q; turns off. The bootstrap capacitor —Qs
in this circuit—is then charged to approximately a
threshold voltage below the input, since node 2 is heavily
loaded. Node 2 is held near ground by Q. during part of
the time that Qs is turned on because of the inverter
delay between the input and the gate of Q..

If node 2 begins to move upward during this precharge
period because of different loading conditions or because
Qs is given a smaller width-to-length ratio, Qs will
dynamically precharge node 3, being bootstrapped by
the rising voltage at node 2 and the bootstrap capacitor,
and it will turn off when node 3 reaches a threshold
voltage below the level of the input signal. Q, is not
conducting while node 2 is being charged through Q.

Since the bootstrap capacitor is precharged, it will

DEPLETION-MODE
TRANSISTOR

T+
s

ENHANCEMENT-MODE
TRANSISTOR

s
[=}
IS

Voo Vop

— e

Vbp

OUTPUT

INPUT —————{ E Q;

1. Dynamic driver. Bootstrap capacitor Cs is charged to Voo when the input is low, causing the gate of Q; to be held near ground. As the
input rises, the charge on Cs is redistributed between Cs and the gate of Q;. The output is charged to Voo as Q- is switched to its linear region.
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boost node 3 to a voltage higher than a threshold drop
below the input. This provides increased on-drive for Q;
and, in turn, a faster rising output transition than might
otherwise be possible. The actual voltage to which node 3
is bootstrapped is determined by the ratio of the boot-
strap capacitance to that of Qs plus the contribution
made by parasitic capacitances.

When the input falls, Q¢ turns off, Q; turns on, and
node 3 is pulled near ground. Q; enters a nonconducting
state, resulting in a rapidly falling response, since Qs
need sink current only from the load capacitance. This
action helps to reduce the down-level power consumption

as well.

Unlike the dynamic depletion-mode driver, this con-
figuration provides for dynamic precharging of the boot-
strap capacitor directly from the power supply (through
Qe). A detailed analysis shows that to obtain a given
amount of bootstrap voltage, a bootstrap capacitor less
than half the size of that necessary for other configura-
tions is required. For the typical layout, it will be consid-
erably less than half.

The active bootstrap technique can be applied wherev-
er high speed and low power are prime considerations —
if the extra chip area required is acceptable. The circuit
of Fig. 2 has been designed and tested using n-channel
silicon-gate technology. O

Voo

—C+ -

» QUTPUT

= Ci

INPUT ————-—4-—' Q,

2. Better bootstrap. With the input low, node 1 is high, Qs is turned off, and Q; is turned on. As a result, node 3 is low and driver Q3 shuts off.
Qs can be made physically long, limiting its current and reducing overall power consumption.

Exploiting the full potential
of an rf power transistor

by Dan Moline and Dan Bennett
Motorola Semiconductor Products Sector, Phoenix, Ariz.

With improved packaging and appropriate circuit
design, the new MRF630 radio-frequency power transis-
tor can be used out to its design limits—the generation
of 3 watts with 9.5 decibels of gain at ultrahigh frequen-
cies when assembled with an all-gold metal system.
Good heat sinking enables Motorola’s low-cost
grounded-emitter TO-39 package for rf transistors to

perform like a stripline opposed-emitter type. In this
package, the MF630, also from Motorola, shows impres-
sive boardband response, excellent heat dissipation, and
high reliability.

So that heat can flow directly away from the transis-
tor die, a flange is soldered to the bottom of the TO-39
can and secured to a heat sink by one or two screws (Fig.
la). This assembly method maximizes heat dissipation
while minimizing space requirements. Also, electrical
grounding is better as the package is now connected
mechanically to the chassis ground.

The broadband uhf amplifier circuit in Fig. 1b uses a
distributed-element design to optimize the gain and
bandwidth of the MRF630. The transmission lines are
simulated by epoxy fiberglass G-10 board, whose high
dielectric constant and low cost keep the circuit small

9



