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PREFACE

The series of Notes on Applied Science is published by the National Physical
e Luboretory to provide industrialists and technicians with information on

~ various sdientific and technical subjects which is not readily available
elsewhere. The experiénce of the Laboratory has ifidicated a number of
subjects on which short monographs would be of value, and & list of those
already written is given below:

No. 1. Gauging and Measuring Serew Threads Price 5s. dd. (5.9. 4d.)
‘No. 2. The Industrial Application of Aero- s

1

dynamio Techniques . Price 3s. 6d. (3s. 10d.)
No. 8. Electrical Insnlating Materials and ‘ o .7
g . Methods of Test, . . Price 1s, 3d. (1s. 6d.)
No. 4. Meuunement of Humidity . . . [Price ls. 0d. (1. 2d.
No. 8. uge Making and Measuring . . Price 3s.6d. (3s. 'Bd;}
No. 6. ‘Volumetrm Glassware—Socientific L ‘.
’ " Aspects of Design and Accuracy . Prioe ls. 6d. (1s. 84.)
No. 7. Balances, Weights, and Precise Labora- I ‘ i
s, - Weighing . Price 2s. 0d. (2s. 2d.)
No. 8. Audio Frequency Power Mea.surements Price 1s, 0d. (1s. 2d.)
No. 9. Measurement of Pressure with the = %
< -~ Mercury Barometer .. . Price 1s. 0d.'(1s. 2d.)
'No. 10. Noise Measurement Teehmques Price 2s. 0d. (2s. 2d.)
No. 11. Wind Effects - on Bridges and other
' Flexible Structures:. - Price ls. 9d. (1s. 11d.)
No. 12. (Calibration of Temperature Mea.aunng
. Instruments Price 2s. 6d. (2s. 84.)
No. 13. Standard Capacitors and their Acour- ) B o e
_aoy in Practice " Prige 1s. 3d. (1s. 5d.)
No. 14. Photometry of Telescopes and Binocu- - Al TR
‘ lars . Price 2s. 0d. (2s. 2d.)
No. 16. ~ Application of Spnng Stnps to Instru- - ) P
: ment Design , Price 2s. 0d. (2s. 2d.)
No. 17. High Voltage Impulse Testmg ' Price 1s. 6d. (1s. 84.)
No. 18. High Voltage Bridge Mea.surements at ,
Power Frequencies . In the press

Further information, or advice on spemﬁo questmns, can be obtamed
by writing to the Director of the Laboratory.

The scientific work of the Laboratory is made generally known through
the contributions which are made to ledined sooieties, eto., and which

. appear in their journsls. Details of these papers. are oont.amed in the -

Q\mrﬁerly List of Papers Published. Application to be placed on the mail-
ing list to receive, free, the Quarterly List and the List of N.P.L. Publica-
tmns should be made to the La.bora.tory ,

 NATIONAL PHYSIOAL LABORATORY
TEDDINGTON, MIDDLESEX
1957
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INTRODUCTION
These notes on computation are based on lectures d.ehvered by various
members of the staff of Mathematics Division, N.P.L., as part of a
vacation course on ‘“‘Computers for Electrical Engmeenng Problems”,

orgsnized..by the Electrical Engineering Depsrtment of the Impena.l
College of Science and Technology, and attended by representatives of -

- industrial firms. The course was designed to teach the basic principles of

the use of anelogue machines, high-speed digital -computers, and the
techniques of numerical mathematics involved in the solution of problem.a
in electrical engmeermg .

Numerical methods are required in all bmnohes of science, and the
“techniques are generally independent of the source of the problem. For
example, the same type of differential equation may represent ® problem

~ in physiology as well as a problem 'in electrical engineering. The oppor-

tunity has therefore been taken to present, as one of the N.P.L. series of
Notes on Applied Science, suitably edited versions 6f those lectures contri-
buted to the course by members of Mathematics Division. :

- The first four chapters discuss ‘“‘algebrhic” problems. Chapter 3 con-
siders the determination of the real and complex roots of polynomial
eéquations, while Chapters 1, 2 and 4 are concerned with the basic probleths
of “linear algebra”, the solutnon of simultaneous linear algebraic equa-
tions, the inversion of matrices, and the determination of their latent
roots and vectors. Methods are included for use mth desk mdehines and
also with high-speed digital equipment. .

The “analytical” part is contained in. Chapters 5-9. Chapte;- 5 intro-
duces the theory of finite differences, used in Chapters 6 and 7 to solve
ordinary,diiferential equations respecmvely of boundary-value and initial-
value types. Chapter 8 considers the solution of hyperbohc partial differ-
ential equations by the method of ‘“‘characteristics”, and Chapter 9
discusses various methods of solving parabolic and elhptw partla.l differ-
ential equations, -

Many problems in linear a.lgebra,, and the slmultanaous ﬁmte -difference
equations, linear or non-linear, used to represent the solution of differ-
ential equations, ordmarv or partial, are often sonveniently solved by
methods of successive approximation, and the use of relaxation methods
is deseribed in Chapter 10.

Chapter 11 discusses the problems arising in the construction of mathe-
matical . tables, and Chapter 12 demonstrates the neecessity of using a
variety of techniques in the various stages of solving a given problem

It is no¥ possible, in twelve short cha.pt»erq to cover in detail all‘branckies _

. of the subject. Appendix 1, however, contains a fairly comprehensive

bibliography of the most useful books and papers covering the various -
topics of numerieal analysis, including some not considered: in e&rher ;
cha.pbers RTINS
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pperidix 2 gives a brief description of the pEuUcE, the high-speed
dlét.al ma.ohmegxln operation in Mathematics Division, and illustrates ite
application to & given problem. The Division also operates a-mechapical
differential analyser, and Appendix 3 describes the basio features of such
. a machine and indicates the types of probleni for which it mlght profitably
" It is not possible, and wonld certainly be misleading, to attempt an
' 'enm::i’on of the physical problems which can be solved by computa-
tion. Sufiice it to say that almost any problem which can be represented
by oné or more mathematical formulae or equations is amenable to
'computing methods. A '

>

' NATIONAL PEYSICAL LABORATORY

. Nortxs ON APPLIED SciENoE No, 16
- Modern Compiting Methods
s ERRATA 7
" Page 49. Delete Table 2 and substitute the following:
. § » - 17 - 62 N F 6‘ j
" +0-0 —0+00000 ‘
B . ) -~11
0-2 0-00011 + 2
: =9 - 45
0-4 0-00020" . B . —4
: -2 +1
0-6 - 0-00022 + 8 +1
" 4 +2
. 0-8 0-00016 *© +10
: +16
+1:0  —0-00000

National Physical Laboratory
June 1957

(70143) 'Wt. 4408/772 K20 6/57 Hw.
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1 |
. LINEAR EQUATIONS AND MATRICES (1)
DIIZVI‘;NITION‘S AND IPiOP]BTIE.S o e S [
1. A general set, of linear simultaneous algebraic equations can
written in the form - | L
Oy +01gg + .. + O Ty = by, |

=

(1)

Qg1 %y +0ggZy + ... + gy 2y = by,
' Bp1 Ty +Bpg Byt oo +OpgZy = by | PR
The coefficients a,, form a square matriz, ' :
_ | % Gy e Gy - . : -
a, Bgg .- '
Ax| I Bu - G o 9)

a”'l a“ soe a“
and the column of constants b, forms a column mairiz, or vector b. The
__uhknowns z, form a veotor x. Equations (1) can then be written in the
shortened form Rkt T @
 and the left of (1) gives the tule for premultiplioation of a veotor by &
matrix, 7 ' ' ’ ,
2. The solution of (1) can be written in general terms as

: " %y = oy by +ayeby +"'+ ¥y bpss :

| %y = anb, +a”b,‘+.‘.-.+ra..b,,, : )
v Tp = “nibl"'anlbt"""""'%bm'»
‘or in matrix notation as _ e S
X = A-1b, ‘ (8)

‘where A-! has the same form as (2) with a replaced by «. The matrix A~ .
“is called the snverse or reciprocal of the matrix A. A SN V>
- The elements «,, of A-! depend only on the élements a,; of A and, in
equations (4) for the solution of the given equations (1), it is olear that a
knowledge of a,, enables the answers to be obtsined with relative ease:
in partioular if many sets of equations require solution for whioh only the
: 'ﬁgﬁ:-rl?and sides b, change, the evaluation of the elements a,, of A=,
- followed by insertion in (4) of the various b,, may give the quiokest method
of solution. On the otheér hand, the determination of the «,, is not trivial. 5
‘ 1 :



_Eqnatlons (4) indicate one method of doing this: if i in these equamons we
WIite by = 1,by = by =...= b, = 0, we obtain ‘the elements of the first
column of the i inverse. It foliows that the various columns of A-! can be
found by solving in succession equations (1), in which the nghb -hand sides
are replaced by suocessive columns of the matrix

(3.0 0 .. %7 <07
) 01 0 .. . 0% 3
o 00 .. 0 1)
Thls is the unit matriz of order  or identily matriz, so called in virtue of
the rela.hon , :
: oL Lx=x, - M

Another mportanb property of I, (or just I when the order is obkus) is
~ derived from (5) by premultiplication with A, giving

] ‘ Ax = AA-1b =1
in virtue of (3), so that o ‘ ' ' '
g : AA-l=1. o Bt (8)
"~ 8. The main properties of matrices required in practice are those of
addition, multiplication, and tra.nsposmon
Matrices can be added only when of the same order, a.nd if B is the
‘matrix (2) in whlch ais repla.oed by b, then ’

gy by Oy Tb19 o0 Byt bag
Ggy +By1,  Bop + by, .. Gt by (©) :

Uty @ue #* bnz, crrs Oy i bmu

If & matrix A is multiplied by a number %, the msﬁlting matrix has
elements ka,,, that is every element is multiplied by k.
Square matrices.of the same order cax be multiplied, to give

! @3 b1yt G1gby1 +Bysbart iy - GBpyByp+ ypboy +ayabge +- ey
AB = | a5 by +Gaby + @byt Ggrbrgt Bogbag +agsbga+ ..y .o

= . -
P T L R LR T N R R R X srsucene ew s e

' - (10)
If we use the notat-mn r.(A), c,(A) to denote respectively the rth row and
th column of matrix A, and r,¢, to denote the result of multiplying sorre-
sponding elements of r, and ¢, and addmg the results (scalar product), we
can write (10) in thé’*mmpler form

ry(A)cy(B). r4(A)cy(B) rl(A)c,,(B) j
AB= ‘ g\A)Gl(_B) Te(A)G;(B) ,Tz(A)Cn(B) 4 ('“),
L n@®a®) rAea®) . n@de® | -

2



From (11) it is'obvious that in general AB#BA, g0 that the order of multi-
plication is importaunt. In (11) we refer to AB as B premultiplied by A, or
multiplied on the left by A, or as A postmultiplied by B, or multiplied on
the right by B. : : Sy
The transposed matrix of A, called A’, is derived from A by interchanging
rows and columne. If a matrix is symmetrie, so that a,, = a,,, then A’ = A, -
and it follows from (11) that in this case

. AA=AA.. (12)

The only other important cases in which the order of multiplication is
immaterial are contained in the equations ' ]

AI=IA, T

 AA = A-ASTEL el g
The transpose of a product is given by [ R ko
¥ (ABY =BA. .- . (8.
: The final nuporta,nt rule is that for inversion of a product, and is givent by
‘ (AB).'_I‘ ;;BLlA;'l’ T . -{18)

the order of multip]ication being reversed as in (1'5).

4. Associated with a matrix A is its dejtemzinc_mt det. A or | A [.FWhe'reg,s'
the matrix is ait array of numbers and can be regarded in many ‘ways as
. an operator, the determinant is & pure number. For example

‘ a Gy O :
. ‘.la by by
c, Cy C3 - c 3 . :

| - and the general rule for evaluation should be obvious. The. determinant i

...bl‘ 'b;,

6 Ce |,

by by
'c, Cy

b,
€y

=y — 0Oy ag

\ +

£ l 6 G

is called the first minor of a,, and is the determinjanﬁ obtained by omitting
from the original determinant the row and column’containing a,. * :
Tt can be shown that the inverse A~ of Ais given by

S O Ay "421 Ay —Ay ]

! _—'Aiz Azzi '-‘Aaz : Ay

e 18)
4] oy

............................................

" Note that in: (18) the minors 4,,, obtained by omitting from the original
determinant the row and column containing a,,, ocour with alternate signs -
and are transposed in comparison with the corresponding elements a,, of A.

| _ . ,

EIh



. 6. When |4 | = 0,'it i8 clear from (18) that the matrix A has no inverse.
8Such & matrix is called singular, and the corresponding linear equations
have in general no solution. If | 4| = 0 it means that the rows of A are not
linearly independent, at least one being obtained by linear combinations of

. the others. For example in the equations .. - -

: z1+a:,+ zl'“ b‘l" : :
Ty~ Ty + 225 = by, - (19)
32, + 24 + dag ='by,
it can be. verified that the determinant
' 1 11
1 =1 2
\ '3 1 4 _ :
" and the third-of (19) is obtained by adding twice the first to the second.
In this case the equations are incompatible unless 2b, + b, = by, and if this -
‘holds we have effestively only two equations in three unknowns, and
there is an infinity of solutions. b S e
If the equations are homogeneous, so that the constants b are all zero,
the equations have no solution other than z; = 2, =...= z, = 0 unless the
determinant vanishes, in which case we can omit one equation and solve
the rest to find the ratios of the z,. For example, in (19), we can omit the
last equation and solve el

=0,

-

@[zt 2ty 1 = 0, (20)
zl/%—xtlzt+2 = 0, )

finding 2, /2, = — 15, 23/z, = 0-5, which also satisfy 3z,/z;+2y/2s+4 = 0,
the last of (19). | :

' In solving equations or inverting matrioes in which the elements of the '
inverse matrix are large, often associated with a determinant small com-
pared with the original ocefficients, it is difficult to get acourate solutions:
such equations are often called #li-condifioned. - : N

SOLUTION OF EQUATIONS BY ELIMINATION
OR PIVOTAL CONDENSATION
6. It is convenient, particularly if the coefficients.in the equations differ
widely, to multiply the rows.by constants, making no change in the equa-
tions, and the columns by constants, involving a trivial ehange in the
unknowns, ‘so that the maximum ocoefficient in each row and column,
including the constants column, lies between 0-1 and 1-0.

. The simple elimination method taught at school is in practice carried
out systematically and with the inolusion of frequent checks. If in equa-
tions (1), already treated as suggested in the last paragraph, we seleot the
largest element of the coefficients of ,, say a,,, and add suitable multiples
of the ding equation to all the other equations, so that in each

1g equation the coefficient of z, is zero, we shall be left with (n—1)
equations in the (n — 1) unknowns =z, z,, ..., x,. The multipliers are clearly
—81/81, —ag/a,, eto., and are all less than unity. The row containing

4



By thepim,hcdhdtht;piyow m.andthmoquﬁmilofoourﬁieﬂ :
. unchanged and temporarily put aside. We now select as pivot the largest

. ooefficient of x, in the new set of (n — 1) equations and repeat the process,
Continuing in this way we have finally a single equation in the unknown z,,

The various pivotal rows are then assembled, and have the form Fisi oo

Cumtlpmte. o oz, =dy, |
aa§=2+cas,+'...+c,,x,: = d, % T P

vesseargieesnnagieneas ";“‘"":""’i’,' y : (2
T e Getettaa b Ot = | ‘
& Onata =y |

-
=

- and the production of this set of equations has been carried out by a
- process of elimination or pivotal condensation. :
.. We can now calculate z, directly from the last of (21), and inserting its
~ taloulated value in the previous equation we can obtain z,_,, and so on.
» - This proocess is called back-substitution. e e
Several gets of equations, for the same A and varying b, can be solved
-almost simultaneously as far as the elimination goes by keeping several
columns b, and in particular these may be the colunins of the unit matrix
if A1 islmqui_red. Each back-substitution process is of course performed
_* separately. | _ o R
The basio check on the elimination consists in carrying an extrs column,
_ whose rth element is formed of the sum of all the elements of A aad bin
. the rth row. These elements are treated in the elimination exactly like the
ocolumns of constants, and after each elimination the “sum” clement should
~_be equal, apart from small end-figure discrepancies through acoumulation -
* . of rounding errors, to the sum of the other elements in it row. 3

“The final results are cheoked by direct insertion in the original equations -
‘or, usually sufficiently, into an equation given by the sum of the original
equations, a check corresponding to the sum check in the elimination. .= -

- At is important to choose as pivot the largest element in a column; the
multipliérs are all then less than unity, and we can work with a constant
number of decimals. @~ - - . SRS

If the matrix of ooefficiénts is symmetric, however, symmetry is main-

¢

" ‘tained if pivots are chosen on the , and the work of elimination
is reduced by a factor somewhat less than two. S AR T

7. The solution of the equations : ,
(-40962, + 012342, + 0-36782, + 0-204%x, = . 0-3597,)

©0-22462, + 0-9872%, + 0-40162,+ 011202, =  0-1260, |
' 0:3648, + 0-1920z, + 0-3728z, + 0-0043z, = 04810,
L 01784, 4 0-40028, + 0-2786, 4 0-8097z, = — 0-3359, ] 3
“*is carried out s follows. The pivots are in italios, and the sum ocolumn is
Isbelled E. The multipliers are called m. - | e

‘ ; f 5

oo .




‘ Elimination - et
Y SIS % G W T e o PR - RN
T 04096 01234 0-3678° 02043  0-3697 1-5548
—0-5483 - 0-2246 0-3872 04015  .0:1129 0:1260 -1-2522
©_0-8899 03645  0-1020 0-3728 00643  0-4810  1-4748
- 0-435656 0-1784 0-4002 0-2786 0-3927 .—-0-3359 0-9140

—-0-9221 .- * 0-3195 0-1998 -0.0485 .=0-0712 0-3996(7)
—0-2372 ©0-0822° 0-0455- —0-1976 ~ 0-1609 0-0910,
0-3465° 01184 = 0-2645 —0-4925 0-2369, -

e 00906 —0:2924 03829 0-1811(2)
-0-1921° ., *0-0174 —0-2603 ~ 0-2777 " 0-0348,

] : _0;2041 +0-2041  0-0000.

AT ST e Back-mbatmuwn
o : st " zy :vs . : z‘. o
- 1-0008 . —0 9993 0-9989 -1-9000

Chook in sum of onglna.l equatlons ,
i 177lx1+ I 1023x,+1 42O7x3+0 86429:‘ — 06308 (0-6310). _

The equations are "somewhat ill-conditioned, seen by the loss of . &
: mgmﬁcant figure in the third pivot, and the results cannot be gua.mnteod
~ to more than three significant figures, even though the last check is good.
‘, Ifth:anomtant terms are uncertain to the extent of half & unit in. the last
ﬁgure the solutions’ ha.ve greater toleranoes. . :
_ If the pivots are selected at each stage from the lnrgest ooeﬂicxent in the -
~complete relevant matrix, rather than from the 6elumns in order, the
tendency.is for the pivots to lose significant figures gradually, and the last
vot is usually the smallest. It is unlikely that this ohome leads to signi-
ficantly greater acouracy in, the final results.
' There are several variatiohs of this stra.lghtforwa.rd ehmmatlon prooess, 3
* deseribed in detail in the first reference. .

. * %
[ L% 3 k -
o :

COMPACT ELIMI‘TATION METHODS

8 For desk machines the dJsa.dva.nta.ge of the simple ehmmatlon
; method is the large amount of recording: there is a uorrespond.mg loss of
accuracy, sinoe at each recording & ;mmber is rounided and a small error
" introduced. . This is avoided in the ‘‘compact” elimingtion methods, of
. which we descnbe the .method of Doohttle applied to the set of four
’. equations =
iy “11‘”1"‘“12‘”2"‘“13%"’“14“’4 = by,
(ii) @y 2y +Bgg ¥y + Ugg ¥y + Ay Ty = = by;
(i) O3, +Ogay + Gpa®y + A5y = by, =
(iv) 8%+ 8%+ Ggg®y + 424 = by

6



¥~ i
The prooedure is-as follows:
- {(a) Add amultiple of (i) to (ii) to ehm.ma.te a; from (ii), thus formmg &
& new aquatlon (ii).
(6) Add mplhples of (i) a.nd the hew (uf to (iii) to ehmmte %, and z,
" from (iii), thus forming a new equation (iti).
(¢) Add multiples of (i), the new (ii)and the new (ifi) to (lv) to ehmmatoL ’
. %y, %y and z, from (iv), thus formmg a new (1v) \ =
. 'The resultmg equations (i), the new (ii), the new (m) and tha new (!v) h&vo
' the form of (21), and can be solved as before by back—substltutmn As

before, a sum column is used as s check.
The oomputmg sheet has the fallowmg appearance:

s s mu L Ou 8 a4 Gy b E %

| Mag May' -, g gy e By T
. . Ma o o oy "fy I
i+ o ou B Z

The ﬁrst mnltlpher s is obtamed from the equation

‘ - ik ' "‘1:“11""%1 g 0 ; :
- and the coeﬂiclents of the new (ii) are obtained from equatmns typxﬁed by
. &n = mlzatla‘i"au; ; - A e = : ¥

The seoond nolumn of multipliers i is obtained from the equa.tlons £

Mys@y+a5 =0, . £ ' ot
L i Mgy +Magoigg +dgg = 0, i i
&nd the eoeﬂielents of the new (iii) from equations typlﬁed by ;
: : : By = Mygby 4 mgy By + by i
o Fma.lly, the last column of ‘multiphe"s is obtamed from the equaﬁoha
m'u“u‘*'au Ry it s =0, S
M Byg+ Mgy gy + Ay et G TR e

» Mg By + Mgy gy + Mgy g + gg = 0
; a.nd the ooeﬂiclenta of.the new (iv) from equations typlﬁed byl

Qgq =My 0y +mu°‘u+m34°‘u+“u

The ‘final equations from which back-substxtutlon is performed a.re
~ closely ‘allied to the pivotal rows of the previous method. If in the latter -
the chosen pivot was at each stage the first eleinent of sucocessive oolumns
” the two sets-of final equations would be identical.
. i The saving in recording time and space is clear. The arrangemont
. also satisfactory in that quantities to be multiplied together lie in the same
row of the computing sheet. The method of Crout, described in the ﬁrst
reference, has an apparently. still more compact la.y-out but is less proof
against error, since numbers to be multiplied together do not ha.ve thil .
: favourable combmahon of posmon

= T 7



Iﬁthemeof:ymmdhiomm&mhaumgofhbonr,mthe
mmeorﬁpntedtrivully&omtheabythorehnonmuu~a¢jq, »

METHODS DIPIHDIKG q,‘;l’ M’ATBII PROPERTIES

‘9. The matrix of coefficients c,, in (21) is denoted by U axid called upper
triangular, sinoe all its elements are zerc below the main diagonal. A matrix
with zero elements above this diagonal is labelled L and called lower
briangnln Triangular matrioes are obviously more convenient than com- .
plete matrioes for solving linear equations: the determinant of such a
mtnrmomver,umltthopmductofthedugomltomu
. -With the Gauss elimination method, the original equations (1), fqr
_ which the matrix is eomplete, were transformed into equations (21), for
" 'which the matrix is upper triangulsr. It can be shown that the elimination
was Sffectively equivalent to multiplying the ongma.l‘ A by & lower
. triangle L, produeing an upper triangle U, so that -
el | TR T - " (22)
“ond AT LAx = Ux = Lb, g (23)
were the equations from which the answers were obtained by baek-
- substitution. The matrix L has units in ite diagonal so that, sinoe LA =T,
it follows that the determinant of A is the same as that of U and equa.l to
the product of the diagonal terms of U. (If the pivots do not all lie on the
diagonal, the sign of the determinant may be changed.) The Doolittle
method can be regarded similarly as the result of matrix operations.
. . Another class of method, the best for deak machines, uses the fact that
& square matrix with non-smgula,r principal minors can be expressed as
- the produot of two triangles, in the form

AU ¢ -'_(24)

The diagond terms of either L or U can ‘bé chosen a.rb:tra.nly, the rest -
being then determined uniquely. If the matrix is symmetrio the diagonals
" of U are best taken to be the same as those of L, and then U is the trans- .
, poso*of L 80 that only one triangle has to be determined from the eqna.tlon

: : ol B R T R ) (28)
3, ,though some elements may be imaginary if A is not posmve definite. ;
10.. When multiplying two matrices with desk machines,. it is best to
reoord the transpose of the right-hand matrix, vertically beneath the left-
~ hand matrix, so that the rnle (ll) for multlphoahon can be written as
P rl(A)rl(B') r,(A)r,(B' ] e ot
Ay AB = | n(A)n(B) r(A)ny®) | -

and. olomenn of rows are multiplied- together oomspondmg elements :
Iymgmthesameoolumn In particular, if B is A, weha.ve : N

el S : AP "1(A)"3(A) : ,
B AA’ = | r,(A)rg(A) LY S B (26)

------------------------------------



The debarmml.taon of L-and U in general is nuﬁaently ﬂuamted By
- consideration of a matrix of order three. The notation and arrangement
are as follows, the triangle L bemgto.kenuumttnmgle andtheﬁmnspm
- of the uppertnn.ngleUbemgthe lowertnangle

A b 2
Gu Gy Oy b, 2%
Gy Gy Gy by Zy
T e
- J .‘ L
X :
Aok
i In I 1
. s X _
Uy Ps. | E51 . R
by Uy, 8 - Ty o Ty
i Uy Ugy Uy ‘a; Xy ‘
Y o Y ' :
8 8 8 &

5

The method and erder of caloulstion are as follows. The mul'hphoatn

* rule gives A

Oy = (L)n(U) =, “u - "1(L) ":(U ) g “xp “u - "1(1‘) ":lu) - “u: -
- "giving the first column of U’; .

Oy = r,(L)r,(U ) = lu“m giving the second row of L;

= LIV = Ity by, tyg = (L)1) = ln“u‘*‘“lq slvms |
. the second oolumn of Lt R ' s -

¥ -., = ry(L)ry(U) = by iy, Gy = (L) r.(Uf)\-= zus,.+z..u.,. gmng tﬁe
. thirdrawofl. a.ndﬂmlly PRI . :
gy = r,(L) r(U’) = l.lun+l..uu+ua, vmg the lut element in v.
InthesymmatﬂooueU’mLmdneednotbereoorded tﬁcdugonal
termsofLaredenotedbylu,l,,andl,,,mdwehamtheequaﬁons
e A 3
it Gy =08 Gy= = byly, Oy = lulu- v T
SR W Y I X <%
: , ; “u"%‘*‘&'”}oy T
forthe auooemvedshermmtmnbfthe bpes - .
ne” : b W]ienthistnmguhrreso’lntmnisﬁmnhod.woom.qolvethehmdr
- equations (8) by two limoeuel of baok-aubshtuuon Inbroaudng ‘the
mnhuyvectory,dqﬂnad.lﬂ . ;
by ' Ux=y, A SR



2 wecgnwnt@ ; ; Ax=LU.x;=Ly-—"—-ﬁ, , iy (28)

* solving for y from the last of (28), and for x from (27). . - - .~ TP
- 'The elements of y are obtained in the same way as those of U’. If these
. are written in transposed form as a row vector with components y,, ¥, ¥s,
. shown in position in the arrangement. of '§-10, then the equation Ly = b
., gives Jg

$ o Yhi=by gy ty, = éa:‘ ' lai!h"'luyl"'!{; = bs, ..

-* from which the y, are obtained in succession. : RN ,
As & check on all this work we form the sum column X, composed of -
7 the row sums of A and b, and a sum row S, composed of the column sums
. of U’ and y’. As each of the latter becomes available we use the successive
relations = e o W
: )8 =23, r,(L)S =2, n(l)S=23%, e

or By =3I, UnS+8y=3, 18 +lpyS+8, =X, _
We finally caloulate x from (27) from equations typiﬁad by S
o o Le@x=y. . )

- ‘The elements of x are recorded as shown, and calculate from the successive
.~ equations obtained by taking r = 3,2,1 in (29), an given by s, =y,
< Vng®s +Uga Ty = Yy, UpaTy+Uyg @y + Uy, 7y = Y2- If 8 is the column formed of .
~**the row sums of U’, & suitable check on this back-substitution is given by

“

,( T e G T '813.1"1:83231'1'33953 =% +Y2+. P
- 1§ the matrix is symmetrio, equations (27) and (28) are replaced by
X 7’ S ’ . i - 30 ‘
< AR T -Ax===LL'x=LY=b»} ( *)'

. #so0.that U’ =L and the only change in arrangement is the complete
" . omission of U’, the sums S and s being attached to L. 3 e R
!, 12. The solution by this ndethod of the previous example is given below.
'~ The fact that the answers are exactly ocorrect to four decimals is rather - .-
- fortuitous, though the accurady might be expected to be slightly better.
than that of the previous method. : Tw TN e

; R A A A . b =
.~ 104006 01234 ' 03678  0-2043  0-3597 1-5548
- 0-2246 03872 04015  0-1129 0-1260  1-2522(1)
103645 0-1920  0-3728  9-0643 0-4810  1-4746
01784 04002 02786 ° 0-3927  —03350  0-9140 oy
h P
"_ e @ % . -,
05483 1
. 08809  0-2572 1
| 04355 10844 16-6509 1
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" 0-4096
' 01234

© 0-3678
0-2943

y o 3597

S 1-5548,.

o
0-3195

0-1998  —0-0059
—0-0485 —0-1851
~0-0712  0-1792

0-3996; —0-0118,

-]
0-4096
0-4429

- 06617

33902 . 3-4500
~3-3092 (- 29315;)

0 0000,/

.x.
+10000 ]
- 1-0000 ;

410000 -

— 1:0000

\

13. For matrix inyersion there are variqus possxbx]mee followmg t‘he

tna.ng'ula.r resolutmn We can invert'both L and U, then ﬁndmg Af"L £rom

U‘1 L (unsymmetno case), |
A"l = (L B L"1 (symmetnc oase)

< In the seoond of (31), of courno, L= {(L’)"‘}’ 80 that only one tna.nglo =

" has to be inverted.
The arrangement er inversion of triangles a.nd the final multxplica.t{on ,

together with- othér still more compact methods in which the triangles .
. are not inverted, are described fully in the references. Thesse oompn.ot

* methods-are important for the eoonomoal use of desk machines. : - .

- 14. The application of methods of iteration or. sucoessive a.ppronms- |

tion are desonbed in Cha.pter 10 e : 3

3

£
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