i"'READINGS IN

AUTOMATIC
 PROC ESSIN G

. AMERICAN ELSEVIER

7963215
§

READINGS IN

AUTOMATIC LANGUAGE PROCESSING

EDITED BY

DAVID G. HAYS

The RAND Corporation

NEW YORK

AMERICAN ELSEVIER PUBLISHING COMPANY INC.
1966

SOLE DISTRIBUTORS FOR GREAT BRITAIN
ELSEVIER PUBLISHING COMPANY, LTD
Barking, Essex, England

SOLE DISTRIBUTORS FOR THE CONTINENT OF EUROPE
ELSEVIER PUBLISHING COMPANY
Amsterdam, The Netherlands

Library of Congress Catalog Card Number: 66-19743

COPYRIGHT (© 1966 BY AMERICAN ELSEVIER PUBLISHING COMPANY, INC.

ALL RIGHTS RESERVED. THIS BOOK OR ANY PART THEREOF

MUST NOT BE REPRODUCED IN ANY FORM WITHOUT THE WRITTEN
PERMISSION OF THE PUBLISHER, AMERICAN ELSEVIER PUBLISHING
COMPANY, INC., 52 VANDERBILT AVENUE, NEW YORK 10017, N.Y.

MANUFACTURED IN THE UNITED STATES OF AMERICA

Preface

The readings collected in this volume are not intended to substitute for a
textbook, but to supplement one. In a university course, with a series of
lectures to provide the central framework and a few longer monographic
publications to treat key areas in greater detail, this volume might suffice,
but that is not its proper role.

It is not intended to introduce a novice to the digital computer, for he
can acquire a better introduction in many ways; the elementary statements
in the following introduction may lead some readers to go in search of a
proper description of the computer and how it is programmed, but that is
another matter. A previous acquaintance with linguistics is also advisable.

The papers presented here are not always the historically significant
contributions, but if I had taken a historian’s view I could not have abridged
the individual readings as I did.

I have included these papers because they epitomize, in their various
ways, methods, solutions to central problems, or approaches to the use of
the computer as a processor of natural language. Other papers will un-
doubtedly refine, or perhaps supersede, the concepts that the reader can
learn from these pages. But I have tried to choose papers in which sound
concepts were developed with enough richness of detail to let the reader
see how it all works.

I am grateful to the authors who permitted me to reprint their work, and
to abridge in order to conserve space. I am likewise grateful to the pub-
lishers whose permission to reprint I hereby acknowledge. And I apologize
to the authors of equally meritorious papers for which I was not able to find
a place. I trust that the reader, after this introduction to the field, will be
prepared to seek them out.

D.G.H.

1943215

Table of Contents

Preface «svscicmmsns s vuonms sz imanes s ie@ans saEm s ¢ L8 AN
1. Introduction (David G. Hays)ccouueenon..
2. Specification Languages for Mechanical Languages and their

Processors—A Baker’s Dozen (Saul Gorn)
3. Natural Language in Computer Form (Martin Kay and Theo-
dore W. Ziehe)uuuiiiiiiiiiininnananaan.
4. A High-Speed Large-Capacity Dictionary System (Sydney M.

Lamb and William H. Jacobsen, Jr.)

5. Parsing (David G. Hays)c.c.cuuiuiiiuninn..

The Predictive Analyzer (Susumu Kuno)

Connectability Calculations, Syntactic Functions, and Russian
Syntax (David G. Hays)

8. The Grammar of Specifiers (David A. Dinneen)

10.
11.

Research Methodology for Machine Translation (H. P. Ed-
mundson and David G. Hays)

On the Mechanization of Syntactic Analysis (Sydney M. Lamb)

Keyword-in-Context Index for Technical Literature (H. P.
Luhn) ...

Automatic Phrase Matching (Gerard Salton)

. A Framework for Qvnfar'fm 'T'ronchhn.. Vi 02 PO, . | Yngve)

ﬁ | mw g
il 0 - e e e e e e L
| i

ii

33

51
73
83

107
127

137
149

7963215

1 Introduction

This book takes the name of a field that encompasses every use to which
computers can be put in the manipulation of ordinary language—the kind
of language spoken and written every day by almost every human being in
the course of his private, commercial, or academic routine. The papers in
this book do not cover the whole breadth of what computational linguistics
will one day span. It would not be possible, as computational linguistics is
entering its second decade and the digital computer its third, to predict
every application to which linguists will put the computer in the future nor
the kind of programs that will make the computer an entirely useful tool
for the jobs that have already been invented for it. By 1945 it was obvious
to a few engineers and mathematicians that automatic machines could be
constructed to perform any numerical calculation; by 1955, a few linguists
had realized that the advancement of their science required the computer,
and that by means of their knowledge the computer could be put to work
in new, useful areas. Perhaps by 1975 applied computational linguistics
will be known to everyman, and it will be possible to estimate the true
market for automatic language processing. In 1965, university scholars
are just beginning to adopt the computer as a research tool, and commer-
cial applications are just beginning to show a profit.

The importance of the automatic digital computer as a laboratory instru-
ment is known to everyone. It serves two major purposes: reduction of
data and derivation of conclusions from theoretical premises. Like physics,
with its voluminous collections of cloud-chamber photographs and like
sociology, with its massive collection of census reports and other demo-
graphic data and like biochemistry, with tens of thousands of compounds
to test for possibly beneficent physiological activity, linguistics has more
data than any previous generation of linguists knew what to do with. Every
published book, newspaper, and magazine is a sample of human use of
language, and if he prefers to observe language in its spoken rather than its
written form, the linguist has only to turn on a tape recorder beside his
radio or television set or wherever a conversation takes place. But it does
no good to record these data if analysis is impossible. The human scholar
can hope to identify only a few of the patterns, regularities, and systematic
features that could be found by fully detailed, uniformly thorough analysis
of every available specimen of human language. Insofar as the computer

1

2 Readings in Automatic Language Processing

can be programmed to inspect the material at hand, and to report what it
finds in summary terms, it becomes the linguist’s indispensable assistant.

A theory is a collection of fundamental propositions about reality. Taken
together, these propositions predict many—often indefinitely many—con-
sequences, sometimes testable and sometimes not. The task of the theore-
tician is to discover what these consequences are, and it is exceedingly
hard work. Computers are often used as working models of theoretical
systems; they are allowed to operate randomly, except for the constraints
imposed by the theoretical principle being tested, so that the results of
their calculations can be ascribed in part to chance, in part to the theory
being tested. This technique, first called the Monte Carlo method and now
often described as simulation, has given the computer a second major role
in science. The intricate phenomena called natural language can be de-
scribed only by theories of great complexity; computer simulation is being
used to test the consistency of linguistic theories and to help isolate the
weak points where they require strengthening.

Outside the field of linguistics, and therefore to be counted among appli-
cations, several branches of social science need the digital computer in its
guise of language processor as a laboratory tool. Psychology, sociology,
and anthropology are largely—if not altogether—dependent on the analy-
sis of what the persons studied say and write. Social scientists conduct
interviews, observe group discussions, collect letters, diaries, and other
private communications, examine the contents of newspapers and other
mass media, and so on. Whereas the linguist’s interest is in the form of
expression, the social scientist’s concern is with content, and a special
kind of content at that: the internal state that causes a person to utter a
particular sentence, in a particular context, at a particular time, and the
effect on his audience of what he says. To take the case of group discus-
sions, how can affection, respect, and authority be predicted from what
the discussants have said to one another in the course of a few hours of
conversation? Or to take an example from history, how can the motivations
of a leading personality be estimated from his memoirs, notes, and other
papers of a certain period? A computer program based exclusively on the
linguist’s theory of language could not be expected to serve the social scien-
tist’s purposes, yet one might expect that analysis of forms of expression
would be, in each application, prerequisite to the analysis of content, and
so it has turned out.

The library is the scene of another exceedingly obvious application of
computational linguistics. Knowledge is preserved from generation to gen-
eration in many forms, in sound recordings, motion pictures, charts and
diagrams, models, and many other guises; yet text remains the predomi-
nant medium for the preservation of what the earlier generations have

Introduction 3

learned. Until writing was invented, the upper limit on what a culture
could remember of its own past was narrowly limited; everything had to
be remembered, and even with specialists in the art of memorization no
culture was ever able to preserve a small fraction of what the earliest col-
lections of manuscript brought together. Libraries have been growing for
two millenia, and they seem to be reaching a new kind of limit: the upper
limit of what can be preserved by a culture without active mechanisms for
locating what is stored. Subject classifications and indexes, implemented
with card catalogues and similar systems, are scarcely adequate for libraries
of twenty million volumes, and the world’s most important research li-
braries are now passing that mark. The computer has been called on to
provide a solution to this problem; like the social scientist, the librarian is
concerned with the content of text, not with the form. An article in a scien-
tific journal is intended as a contribution to knowledge; the librarian’s task
is to discover where, in the vast, indefinitely complex body of facts com-
prising man’s knowledge of himself and his universe this contribution fits.
What does it repeat in order to demonstrate its proper position, what does
it contribute that is novel, what new connections does it make among
known facts? Perhaps no librarian has ever made such an analysis of a
library, but librarians with computers programmed for automatic language
processing may eventually be able to do just that. Such at least is the goal
of automatic documentation.

Other important and difficult areas of application for computational
linguistics have been noted. Machine translation was probably the first.
Here the goal is to translate the content of a document or spoken message
from one spoken language into another. Programming digital computers,
even when the purpose of the program is simple numerical processing, is
to some degree applied’ computational linguistics. The languages used by
the earliest programmers were exceedingly simple, not calling for the same
kind of theoretical models for their analysis as do the natural languages.
As programmers attempt to do more and more difficult tasks, they require
more and more powerful languages. Furthermore, they are attempting to
relinquish their original duties to less well-trained users. If a person with-
out detailed training in the design of computer programs is to explain
directly to the computer what he wants done in more and more difficult
cases, computers must be provided with programs for language processing
in order to translate the user’s statement into a sequence of operations.

Thus one branch of computer programming has moved very close to
linguistics. Other applications of automatic language processing in business
and government come to mind as soon as one observes the obvious fact
that buyers and sellers, administrators and underlings, like all the rest of
humanity, exchange enormous quantities of words every day. To help them

4 Readings in Automatic Language Processing

in processing their correspondence would be profitable. The applications
in teaching could be equally important. Finally, there is a range of applica-
tions that calls for much less sophisticated knowledge of natural language,
but that has already demonstrated how major changes in industry can be
brought about with simple ideas. Typists and typesetters occupy them-
selves for millions of hours each year with the remaking of text: copying
from one sheet onto another, producing “clean copy” by collating correc-
tions, deletions, format instructions, and hyphenation with “a preliminary
draft.” If the preliminary draft is stored in the memory of a digital com-
puter, the collation can be made automatic. The typist need only transcribe
the amendments, leaving the computer to carry forward what was correct
on the draft, to put the changes in at the right places, to arrange the
format as it ought to be, and to justify lines if that is called for. Many
newspapers are now produced in this manner, books are printed with the
help of computers, and it seems obvious that in time virtually every type-
writer operated by a paid employee will be connected in some manner to a
computer. And here the circle closes, for the text put into the computer
for the sake of reducing cost and increasing speed in the publication in-
dustry becomes a base on which the linguist can perform his research.

Pure computational linguistics and its several applications are unified
by their common employment of certain techniques and processes that
make up the specific substance of the field. Linguistics as a whole, and
abstract linguistic theories, are not directly concerned with the computer.
Algorithms appropriate for carrying out the processes suggested by linguis-
tic theory and the facts of natural language are a special problem, one with
which the linguist need not concern himself unless he chooses. The com-
puter can aid him, whether he understands its workings or not. Neverthe-
less, tradition has it that the good craftsman knows his tools and, therefore,
every linguist has good reason to choose to know at least a little about the
computer.

In comparison with empirical procedures, computer-based methods for
handling large files of text, large dictionaries, complicated grammars, and
other large files of data are fantastically easy. Still, these files have to be
prepared for input to the computer, arranged conveniently in the compu-
ter’s active storage area, transferred to and from inexpensive media for
permanent retention, reorganized, and printed out for inspection. In short,
one group of elementary processes required throughout computational
linguistics constitutes a system for file maintenance. Textual and similar
materials generally go into the computer by way of a keyboard operation.
There are typewriters that produce paper tape, punched cards, and mag-
netic tape; they are manufactured with many different character sets, some
very limited and others satisfyingly large. It is also possible to connect one

Introduction 5

or many typewriters directly to a computer, through electrical wiring. The
operating speeds of contemporary computers are so high that a computer
can recognize each key stroke as it occurs on each of a hundred typewriters
being operated simultaneously by fast typists and still have time between
strokes to carry out some simple computations.

Inside the computer, the usual storage medium is an array of magnetic
cores, each holding just one bit of information; six or eight bits are com-
monly used to represent a character. Standard large computers can retain
about two hundred thousand characters in storage. Magnetic tape, on which
information is recorded in the same way that sound is recorded by home
* tape recorders, is the usual medium for inexpensive storage. Information
can be transferred automatically at high rates between machine storage
and tape.

The computer is also equipped with its own printing devices, operating
at high speed, with fonts of from 48 to about 250 characters. Type can be
set automatically from tapes produced by computers; although this process
is slower and more expensive than direct computer printout, it provides
for an exceedingly wide variety of characters and very high quality.

The most elementary operations of input, internal arrangement, and
output are provided for either in the equipment as constructed or in pro-
grams furnished for general use. The linguist working with computers does
not have to begin by designing typewriters or working out convenient ways
of moving large volumes of information to and from magnetic tape. The
lowest level that he has to control for himself is the encoding of his large
character set and the features of arrangement on the printed page that he
wishes to preserve. A six-bit machine character corresponds to one of
sixty-four possibilities; in publishing a book, a typographer can call for
characters from a set of several hundred or several thousand. One of the
typographer’s characters must therefore be represented, in some manner,
by several machine characters. This is the problem of text encoding. A good
scheme retains all the useful information of the printed book and makes
it easy to isolate those aspects of the information about a character that
are needed, for example, in alphabetization.

The linguist’s files are organized in various ways, from a linguistic point
of view, and their organization must be represented within the computer.
Text is organized into articles, books, subject collections, and so on. Dic-
tionaries are organized into entries, each with various parts: heading, gram-
matical description, definition, and so on. A grammar, a bibliography, a
concordance, an index verborum, a thesaurus, a computer program—each
kind of file has a definite pattern of organization. After the content of the
file is first prepared and put into the computer, it is often necessary to add
further information, either for a new element—as when new words are

6 Readings in Automatic Language Processing

added to a dictionary—or of new kinds. Files from different sources, but
of the same kind, sometimes have to be merged; thus, two dictionaries of
the same language might be assembled into a single, larger dictionary. In
merging, provision must be made for putting the elements of the composite
file in proper order, detecting and dealing appropriately with overlap, and
so on.

Files have to be consulted; in some cases, consultation amounts to look-
ing for one specific item whose place in the file may or may not be known.
Thus, if a dictionary is arranged alphabetically by heading, finding the
entry for a given word entails only going a certain distance through the
alphabet; but if a bibliography is arranged alphabetically by author, and
one or more entries on a certain subject are to be found, the subject identi-
fication in each entry must be checked.

Sometimes file consultation must be performed on a wholesale basis,
which is as much as to say that the content of two files must be compared.
For many purposes, the processing of text must begin with dictionary
lookup for every word. When the text is small enough to be stored in the
high-speed memory of the computer, the dictionary can be read in little by
little, and each entry in turn can be compared with all the words in text;
when the dictionary is small enough to be stored, the text can be read one
word at a time. When both dictionary and text are too large, some process
must be found to facilitate all the comparisons; and when both are large
enough, the magnitude of the task justifies ingenuity of the highest order.

Syntactic analysis of a text, the determination of sentence structures, can
be regarded as another kind of file consultation. Yet it is certainly more
complex than dictionary lookup. The units of text that are to be matched
with dictionary entries are explicitly, overtly present in the text, ready to be
matched. A grammar, when it can be regarded as a list of phrases, con-
sists of phrase descriptions to be matched against text, but the phrases are
only implicitly present in the text to begin with. A phrase described in the
grammar may consist of two parts, of which one part is potentially itself
a phrase. But the constituent phrase has its parts in turn, and only the ulti-
mate constituents are overtly represented in the text after dictionary lookup.
Parsing algorithms are devoted to cyclical, or recursive, comparison of
text with grammar so that in effect the phrasal construction of the text is
made explicit, each phrase appearing in time to be identified as part of a
larger phrase.

Grammars are large tables, when they can be treated as tables at all, and
unlike dictionaries their entries are interrelated in complex ways. A diction-
ary can be revised by the simple addition of a new word. When a new
kind of phrase is added to a grammar, or when a new distinction among
parts of phrases is introduced, many other parts of the grammar can be

Introduction 7

implicated, and far-reaching alterations may be necessary. How best to
organize a grammar for consultation during parsing has been the object of
much investigation. Besides tables, computer programs have been suggested
as representations of grammar, and systematic accounts of the features that
permit constituents to be bound together in phrases have also been recom-
mended.

The inventory of elementary processes out of which programs for auto-
matic language processing can be built is not exhausted by our current
knowledge of the structure of language. We are well enough aware of our
ignorance to see, dimly, further aspects of language structure, and much of
what we can hope to bring within our control during the years ahead is
concerned with the representation of meaning. One necessity that seems to
face us is the use of further dictionaries. In the first dictionary, a string of
letters is associated with grammatical and other properties; in the second
dictionary, syntactically connected parts of sentences are tabulated and
associated with elements of meaning. Such dictionaries are apparently
necessary in information retrieval and all other applications where content,
the substance of what is said, must be processed.

No branch of science or technology is ever complete, but books occa-
sionally must be completed so that science and technology may go on. To
regret that this volume of readings cannot cover every conceivable branch
of its subject would be to deny its readers the hope that by clear thinking
and industry they may contribute to further growth. There is room for
growth; our ability to process natural language materials automatically,
almost nonexistent a decade ago, has reached a level that permits us to
look forward to more useful and more intellectually satisfying, and cer-
tainly far more complex, elaborations.

2 Specification Languages for
Mechanical Languages and their
Processors — A Baker’s Dozen

Saul Gorn

1. Introduction

Many varieties of mechanical languages and the languages which specify
their syntax exist. By many techniques and devices these syntactical lan-
guages specify concepts and processes. In these languages it is possible to
specify the same object in different ways to obtain clarity from different
points of view. The choice of the language depends upon its convenience
in specifying or communicating a concept.

The purpose of this paper is to show to what extent the languages
illustrated are capable of specifying such mechanical languages or their
processors, and to what extent these specifying languages are equivalent
in their ease of mechanical translation among themselves.

To dispel some of the confusion as to the power of applicability of these
languages, one trivial example is worked over in a dozen different ways.
The simplicity of this example provides the link permitting the comparison
of the methods of specification. The processor (used by McNaughton as
an illustration of logical nets) being specified we will call the triple sequence
alarm. The corresponding input language of strings of zeros and ones we
may call the triple one sequenced strings. The processor itself as shown in
Fig. 1 may be considered a data generator or a triple one sequenced string
recognizer.

The dozen specifying languages can be given the titles and classifications

Note: The material in this paper comes from the University of Pennsylvania’s
Office of Computer Research and Education and is an outcome of the work jointly
supported by the National Science Foundation Grant G-14096 and the Air Force
Office of Scientific Research AF-49(638)951. Reprinted with the permission of
author and publisher from Communications of the Association for Computing
Machinery, Vol. 4, No. 12 (December 1961), Pp- 532-542.

9

10 Readings in Automatic Language Processing

of Table 1. The groups not separated by double lines are mechanically
translatable into one another from top down. Translation between these

groups calls for heuristic methods.
The examples will illustrate some of the terminology presented in the

01011100 Triple Sequence 00000111
—_— ——
Alarm
Data Form
(Generative)

01011100 | Triple Sequence —
Alarm feeemem— >
No

Control Form
(Recognitional)

Fig. 1.

author’s paper, “Some Basic Terminology Connected with Mechanical
Languages and Their Processors” (Comm. ACM 4 [August 1961], 336).
Some of these languages are essentially one-dimensional (linear) and
some are essentially two-dimensional (graphic and tabular); some are
purely sequential, and some permit simultaneous action; some are more
suitable for behavioral (recognitional) specification, and some are better
for structural (generative) specification; one is a command language where
the others are descriptive; and one is a sublanguage of natural language
where the others are mechanical. Finally, some are more suited to specify-
ing languages and some to specifying processors.

For example, one might have a language which is suited to specifying
languages structurally but which can be used to specify the processors of
those languages behaviorally.

2. Natural Language

The “triple sequence alarm” is a device with one input and one output.
The input will accept sequences of signals of equal duration chosen from
two standard signals which we will designate by the symbols 0 and 1. The
output will emit during each of the signal duration intervals one of the two
signals, O or 1, acceptable by the input. The device is such that a signal 0
will be produced at each signal duration interval until the first occurrence
of a signal 1 which had signals 1 as its two immediate predecessors; at

11

Specification Languages

reinjonns puewwo) snoaueynuIg
10882201 10 [eIOIARYog 10 PaXIN Jo Tepuanbag z ey) Mol ‘€I
Jemonng
108§3001d 10 [eIOIARYSY aanduossq snosuejnWISg Zio] sumpoey Suuny, gy
I0ss3201g [emjonng POXIN snosue) WIS I suonenby resioy ‘11
S[qeLIBA ouwl], giIm
108532014 Jeanjonns aanduasaq snosue)nWIg I a1307 Teuonisodorg -gf
10853001J JeImonng aandisaq snosue)wIg ré 19N 1201807 ‘6
Jeanzonnsg
10853001g Jo [eIoIARySg aandinseq snosue}nuwIg v YILIJeN-00uapouy ‘g
[eanjonns
10883001 10 [e101ARYSg sanduoseq snosue)MwWIg z weiderq a1els joquis -
Jermyonng
108590014 Jo [eIoIARYSg aandiseq SnoasueINWIS 4 weiderq 9jeIs ‘9
oFenSue] Jemjonns aandioseq Tenusnbeg I Xgoig ‘s
o3endue] Jermonng aanduse(q renuanbag ré REES §
ogenSue] [emonng aanduoseq Tenuanbag I WO, [eUWION Snyoeg ‘¢
10§59001 — [RIOIABYSg
oenSue " [eIjonng aanduoseg Tenuonbog I woissordxy remSay 'z
a3en3uey JeIo1ARyog purBwIwo) snosuejnwIg
10 10859001 10 [ernjonns 10 aAndurosag Jo Tepusnbag PA | ofenSue] reimeN ‘1
a8vnduvy [pi01avY2g apopy Sunuf uoisuau(q L

40 105522044

40 [amonay g

sadvnduvy Suikfroadg fo uonvorfissv)) 1 a1qv

12 Readings in Automatic Language Processing

that duration interval and for each successive interval until the end of the
input string the output signal will be 1.

What we have just given is a descriptive, behavioral specification of the
triple sequence alarm processor in a linear sequential sublanguage of a
natural language.

3. Regular Expressions

The language-naming language we now present will have, as basic
processors, generators and recognizers for a certain class of infinite classes
of finite strings of zeros and ones. One such infinite class, for example, is
the class of all finite strings of zeros and ones containing somewhere three
successive ones, that is, the class of all input strings for which the triple
sequence alarm ends with a signal of 1.

The language is that of Kleene’s 15 “regular expressions” as modified by
McNaughton.16 We now specify the “regular expression language-naming
language” in natural language (our next example will present the specifi-
cation in a mechanical language), but in a generative manner known as a
“production system” (see Gorn 7, 8, 9).

The regular expression language is a linear sequential language of strings
of characters chosen from the alphabet {0, 1, (,), *, VV}. Each string of
characters from this alphabet which is a regular expression will be a par-
tial specification of a linear sequential language of strings of characters
chosen from the alphabet {0, 1}; it will be a structural specification when
a processor is specified which will generate all these strings. The purely
syntactic generative specification of the regular expression language is the
following production system

SY, The one-character string, 0, is a regular expression.

SY, The one-character string, 1, is a regular expression.

SY. 1If a string designated by a is a regular expression, then the string
composed in left to right order of “(”, the characters of a, “)”, and
“*” is also a regular expression (briefly, if o is a regular expression,
then so is “(a)*”).

SYs If the strings designated by o and B are regular expressions, then
so is the string constructed by taking all the characters from left to
right of a and following them immediately on the right by all of the
characters from left to right of B (briefly, if a and p are regular
expressions, then so is off). This basic procedure for all linear se-
quential languages is called “concatenation”.

SY. If the strings designated by a and B are regular expressions, then
so is the string beginning with “(” concatenated on the right by the
characters of a, followed on the right by “V/”, then concatenated on

