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Preface

Over the past three decades, the use of numerical simulation with high-speed
electronic computers has gained wide acceptance throughout most of the major
branches of engineering. Our joint research work on the subject of the use of the
finite element method in heat transfer analysis began in the mid 1970s and
flourished in such a way that we decided to write this text.

The text has evolved in much the same way that our joint research did. First,
we went through steady-state heat conduction problems, eventually increasing
in complexity to include such difficulties as the non-linear analysis of coupled
heat and mass transfer in capillary porous bodies and the calculation of shrinkage
stresses using an elasto-plastic constitutive relationship. Our lectures at post-
graduate level at our institutions and at finite element courses in different parts
of the world have also been a stimulus to complete the text.

The need for the book stems from the fact that few texts of this kind exist
despite a plethora of classical work on heat transfer problems. The topic is itself
briefly covered in many texts on the finite element method, but the detail covered
in this book has been available only in research papers up until now. There has
been literally an explosion of research interest in the area and it has been
impossible to reference every work since the early 1970s, as a spectrum of
disciplines is involved.

The arrangement of the text proceeds in a logical order of complexity. The
first chapter deals with the importance of heat transfer in engineering problems
and derives the general heat conduction equation. Then the weak variational
formulation and appropriate initial, boundary and interfacial conditions are
discussed. In the second chapter, linear steady-state heat conduction problems
are solved using the Galerkin form of the weak formulation. Initially the focus
is on problems involving one space dimension in an attempt to develop concepts
and to aid understanding of the process of matrix assembly. Solutions to two-
dimensional problems are then given using rectangular elements. The solutions
are worked for single and multiple elements to bring out the importance of the
number of elements in the solution. Chapter 3 deals with the various time stepping
schemes used in unsteady state problems, including topics such as stability and
convergence of solutions. Chapter 4 deals with the solution of transient non-
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linear heat conduction problems and provides a number of examples. The
problems of melting and solidification are dealt with at length in Chapter 5 in view
of their practical importance in manufacturing processes like casting and welding,
for example. The difficulties associated with the application of the finite element
method to convection problems and the methods used to overcome them are
given in Chapter 6, along with simple illustrative examples of convective heat
transfer between two parallel heated plates.

In order to bring out the practical importance of heat transfer analysis in the
engineering industry, Chapter 7 deals with the application of heat and mass
transfer to drying problems and the calculation of both thermal and shrinkage
stresses.

The preface would not be complete without acknowledging the continued
support that we have received over the years from our respective research councils,
industrial partners, The British Council, and various other funding sources,
together with the invaluable assistance given by a large number of talented
research associates, assistants and students with whom we have had the pleasure
of working.

February 1995
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1 Conduction Heat Transfer
and Formulation

1.1 INTRODUCTION

There are many practical engineering problems that require the analysis of
problems involving the transfer of heat. The solution of the equation of heat
conduction is sufficient in many cases, while the area of application expands
considerably if the equations governing coupled heat and mass transfer and/or
thermal convection are considered. Combining a thermal analysis procedure
with a thermal stress predictive capability can provide answers to questions of
immediate concern in many industrial processes.

In the field of civil engineering, there are numerous examples of practical
problems where the behaviour of the system under consideration may be
predicted via a heat transfer analysis. The thermal properties of materials used
for construction purposes often necessitate the use of some form of insulation to
counter the effects of the wide range of temperatures produced by seasonal
climatic changes. This is particularly true in highway construction, where it is
important to predict the placement and quantity of insulating material in order
to prevent possible damage to the road surface due to frost heave. At excavation
sites, where the soil may be unstable because of friability or water saturation,
artificial freezing of the soil is often employed to render it structurally stable. This
typically involves the circulation of a refrigerated liquid through pipes sunk in
concentric circular patterns around the excavation site. The high cost of the
process, in terms of the refrigeration plant and energy consumption, means that
a numerical simulation of the process can prove to be extremely useful. If the
numerical method makes accurate predictions of the advance of the frozen region,
the numerical results can be used to aid the design of the optimal arrangement
of the cooling pipes and to predict the required running time necessary to
produce an ice wall of the required thickness. In the foundry, it is imperative to
understand the process of solidification in metal casting and the effect this
produces on porosity formation. In high pressure die casting, it is often required
to design a cooling system that will ensure the desired surface finish. Problems
of this type can be investigated by a heat conduction analysis, taking account
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of latent heat effects and allowing for the variation in the thermal properties of
the materials with temperature.

For the simulation of problems involving porous capillary materials, such as
timber or ceramics, a coupled heat and mass transfer analysis is required. The
optimal drying rate to ensure a reasonably stress-free end product will be tied in
with the energy cost of the kiln schedule. Mathematical models, which can
accurately predict the movement of moisture and heat in porous materials, are
often the only means of gaining a better insight into the physical process. Similar
models prove useful in designing geothermal energy extraction systems or in
the analysis of advanced oil recovery by thermal methods. By increasing the
complexity of the governing equations, it is possible to predict the acrodynamic
heating of structures, such as re-entry vehicles, or of turbine blades in a jet
engine. A related problem here is the computation of the thermally induced
stresses and the prediction of the working life of the component. Such information
is essential in the safety analysis of nuclear reactors and also in the modern steel
industry, where the production rate of continuously cast steel is limited by the
cracking induced by thermal stress development in the strand.

Exact analytical solutions of the governing equations of heat transfer can only
be obtained for problems in which restrictive simplifying assumptions have been
made with respect to geometry, material properties and boundary conditions.
There is therefore no option but to turn to numerical solution methods for the
analysis of practical problems, where such simplifications are not generally
possible. The finite element method, with its flexibility in dealing with complex
geometries, is an ideal approach to employ in the solution of such problems.
However, the newcomer frequently finds the gap between finite element theory
and practice quite daunting and it is the objective of this book to attempt to
bridge this gap. The material included proceeds in an orderly fashion from the
governing differential equations to the finite element formulation.

Initially, the basic differential equation governing heat conduction will be
derived and the concept of a variational formulation of the problem will be
introduced. The finite element method will then be used to generate a system of
simultaneous equations which have to be solved to obtain the approximation to
the temperature field in the body of interest. The process will be demonstrated
in detail for the simple case of linear, steady-state problems in both one and two
dimensions. For the solution of time-dependent (transient) problems, finite
difference methods will be employed to determine the variation of the solution
with time. Different time marching algorithms are presented and their relative
merits discussed.

When the variation of the thermal properties of the materials are included in
the mathematical model, the resulting equations are non-linear and techniques
for dealing with this added complication are described. Some examples for
which exact solutions are available are also given for one-, two- and three-
dimensional problems. Solution of the non-linear problems can be extended to
include the effects of latent heat addition or removal as in melting and solidifica-
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tion problems. These types of problems, along with some practical examples, are
dealt with in the chapter on phase change. Convection heat transfer is important
when the heat exchange is between a solid and a fluid. The solution methods for
such problems and the difficulties encountered in the application of the standard
Galerkin method are also dealt with. As has been noted above, there are many
practical problems where the determination of the temperature (or moisture)
distribution is only required as a prerequisite for the calculation of the resulting
stress field. Methods for the determination of thermal or drying stresses in such
problems will be detailed.

1.2 MODELLING OF HEAT CONDUCTION
1.2.1 Derivation of the governing equation

The equation governing the conduction of heat in a continuous medium can be
derived by imposing the principle of conservation of heat energy over an
arbitrary fixed volume, V, of the medium which is bounded by a closed surface
S. For convenience the conservation statement is expressed in rate form and is
written as:

rate of increase of heat in V = rate of heat conduction into V across S
+ rate of heat generation within V (1.2.1)

If u denotes the specific internal energy of the medium, then

ou

rate of increase of heat in V = f 0 % dv (1.2.2)

| 4

where p is the density of the medium. Introducing the specific heat, ¢, of the
medium defined by

_du

c=— 1.2.3
a7 (1.2.3)
where T is the temperature, means that we can write equation (1.2.2) as
: . oT
rate of increase of heatin V= | pc % dv (1.2.4)
v t

To obtain an expression for the rate at which heat is conducted into V across S,

we make use of Fourier's Law of Conduction. This is an empirical relationship

which states that, for a surface with unit normal vector n, the rate at which

heat is conducted across the surface, per unit area, in the direction of nis given by
oT

q=—k(gradT)'n= —k— (1.2.5)
on
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where k is a property of the medium termed the thermal conductivity. In this
equation d/0n denotes differentiation in the direction of n and ¢ is termed the
flux of heat in this direction. Thus, if n denotes the outward unit normal to S,
it follows that

rate of heat conduction into V across S

=J —qdS = f k(grad T)-ndS =j div(kgrad T)dV (1.2.6)
S S 14

S

where the Divergence Theorem has been applied. If it is assumed that heat
generation in the medium is occurring at a rate Q per unit volume, then

rate of heat generation within V = J Qdv (1.2.7)
vV

Using equations (1.2.4), (1.2.6) and (1.2.7) in (1.2.1) produces the conservation
statement:

.[V<pcg’tr—div(kgradT)—Q)dV:O (1.2.8)
and, since the volume V' was arbitrarily chosen initially, it follows that
pc g{: div(kgrad T)+ Q (1.2.9)
everywhere in the medium. This is the familiar form of the heat conduction
equation for a non-stationary system.

If the medium is anisotropic, i.e. the conductivity depends upon the direction,
the form of the heat conduction equation is modified to

oT .
pc . =div(kgrad T)+ Q (1.2.10)
C
where
kxx kxy kxz
k=|k, k,, k, (1.2.11)
kzx kzy kzz

is a conductivity tensor and, for example, k., denotes the thermal conductivity
in the x direction across a surface with normal in the y direction. If the
conductivity k and the specific heat capacity pc are assumed to be constant,
and if the heat generation rate Q is independent of T, then equation (1.2.9) is
linear and can be written as

1 0T
1T _gap, @ (1.2.12)
o; 0 k

where o, = k/pc is termed the thermal diffusivity of the medium and V2 denotes
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the Laplacian operator defined, in Cartesian coordinates, by

o L

vi=" 4 2 4O
ox*  0y?  0z°

(1.2.13)

In the absence of heat generation within the medium, equation (1.2.12) reduces
to the standard diffusion equation:

0
VOT _gap (1.2.14)
o, Ot
If, in addition, the temperature does not vary with time, steady-state conditions
are said to exist and, in this case, the governing equation simplifies further to

ViT=0 (1.2.15)

which is just the Laplace equation.

1.2.2 Initial and boundary conditions

Suppose that the solution of the heat conduction equation (1.2.9) is required over
an arbitrary domain Q bounded by a closed surface, I, as illustrated in Figure
1.2.1. If the problem being modelled is independent of time (i.e. steady), the
solution will be uniquely defined provided that we are able to supply appropriate
boundary conditions. For the steady heat conduction equation, one condition
has to be specified at each point of the boundary curve I' and typical conditions
of practical interest would be:

13>

Figure 1.2.1 General domain and boundary.
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(a) the value of the temperature is prescribed, e.g.

T=f(x) forallxonT, (1.2.16)
or
(b) the value of the outward normal heat flux is prescribed, e.g.

oT
q= —k(grad T)'n= _kT =N T)+R.(x, T)+NX,(x,T) forallxonTl,
on

(1.2.17)

Here f,N,¥. and N, are prescribed functions of x and T and I'=T",uTl,,
I'ynI', =0. In equation (1.2.17) X denotes a specified heat flux; N, denotes a
convective heat flux, defined as

N.=aT—T,) (1.2.18)

where o is a coefficient of surface heat transfer and T, is the specified ambient
temperature of the surrounding medium; X, is a radiative heat flux which is
defined as

N, =eo(T*—T?) (1.2.19)

where ¢ is the Stefan—Boltzman constant and ¢ is the emissivity of the surface,
defined as the ratio of the heat emitted by the surface to the heat emitted by a
black body at the same temperature.

When the problem being modelled is time dependent (transient), the solution
is uniquely determined provided that an initial condition is given together with
a boundary condition at each point of the boundary I of the domain. The initial
condition should give the distribution of the temperature over the entire region
Q at an initial time, usually taken to be the time ¢t = 0. In addition, in a transient
problem, the functions f, X, X, and X, of equations (1.2.16) and (1.2.17) may vary
with time.

1.2.3 Interface conditions

When the region Q, consists of two or more different materials, as shown in
Figure 1.2.2, boundary conditions of continuity of temperature and flux across
material interfaces have to be applied in order to uniquely define the solution. If
we consider an interface I" between two materials, designated Q, and Q,, with
unit normal vector ii in the direction into Q,, these conditions can be written

in the form
oS =Tah ) forallx on Fandall >0 (1.2.2
or all x and ¢
ii-(k grad T), = i+ (k grad T), onlI andall t > (1.2.20)

where the subscripts 1 and 2 denote the conditions appropriate to regions Q,
and Q,, respectively.



MODELLING OF HEAT CONDUCTION 7

Q = Q]UQZ

Figure 1.2.2 Composite material domain and iniertace.

1.2.4 Initial, boundary and interface conditions in a
practical example

An example of a realistic physical problem is now used to illustrate how the
correct boundary and initial conditions may be identified in practice. A tapered
slab of aluminium bronze is cast in a resin bonded silica sand mould and a
thermal analysis is to be made of the process. This problem involves the added
complication that the metal is initially liquid and undergoes a change of phase
during the transient. Methods of handling phase change problems will be intro-
duced in Chapter 5 and the complications associated with the phase change
process can be ignored for the purposes of this illustration. To reduce computa-
tional costs, the decision is made to undertake a two-dimensional analysis, and
a vertical cross-section through the mould and casting, shown in Figure 1.2.3, is
examined. In the actual problem, metal at 1156 °C is poured into the mould
through the riser entrance CD. The simulation of the pouring stage can be
expected to pose additional difficult problems and so the conduction analysis
will start from the time when the mould is full, with the metal taken to be at a
uniform initial temperature of 1156 °C. The external boundary EFGHAB of the
sand will be assumed to be maintained at a constant temperature of 20 °C while
the initial temperature in the sand is also taken to be at this value. The upper
boundary, CD, of the riser will be held constant at a temperature 1156 °C, while
the sides BC and DE of the riser will be assumed to be perfectly insulated and
therefore subjected to a boundary condition of zero normal heat flux. The initial
temperature at the interface between the mould and the metal is taken to be
1080 °C, which is the liquidus temperature of the metal and perfect conduction
is assumed at the interface during the transient so that the boundary conditions
of equation (1.2.20) may be applied.



