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o "Chapter 1
QUANTITIES
AND UNITS

IN THiS CHAPTER:

v’ Significant Figures

v Propagation of Errors

v/ The International System of Units
v Dimensional Analysis

v/ Estimation of Numerical Answers

Introduction

Most of the measurements and calculations in chemistry are concerned
with quantities such as pressure, volume, mass, and energy. Every quan-
tity includes both a number and a unit. The unit simultaneously identi-
fies the kind of dimension and the magnitude of the reference quantity
used as a basis for comparison. The number indicates how many of the
reference units are contained in the quantity being measured. If we say
that the mass of a sample is 20 grams, we mean that the mass is 20 times
the mass of 1 gram, the unit of mass chosen for comparison. Although
20 grams has the dimension of mass, 20 is a pure dimensionless num-
ber, being the ratio of two masses, that of the sample and that of the ref-
erence, 1 gram.
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Significant Figures

The numerical value of every observed measurement is an approxima-
tion, since no physical measurement—of temperature, mass, volume,
etc.—is ever exact. The accuracy of a measurement is always limited by
the reliability of the measuring instrument.

Suppose that the recorded length of an object is 15.7 cm. By con-
vention, this means that the length was measured to the nearest 0.1 cm
and that its exact value lies between 15.65 and 15.75 cm. If this mea-
surement were exact to the nearest 0.01 cm, it would have been record-
ed as 15.70 cm. We say that the first measurement is accurate to 3
significant figures and the second to 4.

A recorded volume of 2.8 L represents two significant figures. If
this same volume were written 0.028 m?, it would still contain only two
significant figures. Zeroes appearing as the first digits of a number are
not significant, since they merely locate the decimal point.

We often use scientific notation to express very large or very small
numbers, indicating the number of significant figures by the number
multiplied by 10*. Thus, for example,

22400 = 2.24 x 10* 0.00306 = 3.06 x 1073

When two exponentials are multiplied (or divided), the exponents are
added (or subtracted). For example,

(1.5 x 10°) X (2.0 x 1073) = 3.0 x 107

(4.0 x 107)/(2.0 x 10%) = 2.0 x 10°

When an exponential is raised to a power, the exponents are multiplied;
for example,
(104)—2 =108 (106)1/2 =103

Some numbers are exact. These include m (3.14159...), numbers
arising from counting (e.g., the number of experimental determinations
of an observed measurement), and numbers which involve a definition
(the mass of one atom of '?C is exactly 12 u and the conversion of cm
to m involves exactly 1072 m/cm).

A number is rounded off to the desired number of significant fig-
ures by dropping one or more digits from the right. When the first digit
dropped is less than 5, the last digit retained should remain unchanged;
when it is greater than 5, the last digit is rounded up. When the digit
dropped is exactly 5, the number retained is rounded up or down to get
an even number. When more than one digit is dropped, rounding off
should be done in a block, not one digit at a time.
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Illustration:

The following numbers are
accurate to two significant figures:
2.3, 0.023, 2.3 x 104.

The following numbers are
rounded to two significant figures:
64500 — 6.4 x 104, 5.75 — 5.8,
1.653 - 1.7,1.527 - 1.5

Propagation of Errors

When we perform a calculation using numbers of limited accuracy,
the result should be written with the appropriate number of significant
figures.

When we add or subtract numbers, the number of significant fig-
ures in the answer is limited by the number with the smallest number of
significant figures to the right of the decimal, e.g.,

420 +1.6523 + 0.015 = 5.8673 — 5.87
This rule is an approximation to a more exact statement that the error in
a sum or difference is the square root of the sum of the squares of the

errors in the numbers being added or subtracted. Thus in the above
example, the error in the result is

\/(0.01) +(0.0001) +(0.001] =0.010

When multiplying or dividing two numbers, the result should con-
tain only as many significant figures as the least accurate factor without
regard for the position of the decimal point, e.g.,

7.485 % 8.61 =644 0.1642/1.52 =0.108
This rule is an approximation to a more exact statement that the fraction-
al error of a product or quotient is the square root of the sum of the
squares of the fractional errors in the numbers being multiplied or divided.
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Thus in the above examples, the fractional and absolute errors in the
results are:

0.001V . [0.01] _ o
(7485) (8_1) 00012 0.0012x 64.4=0.08=0.1

/
\/ (%:‘l)%g%) +(99 gé) ~0.0066  0.0066%0.108=0.0007 = 0.001
The approximate and more exact approaches sometimes lead to differ-
ent results when numbers beginning with 1 or 2 are involved. For exam-
ple, 9.84/8.9 = 1.106. The approximate method suggests writing the
result to two significant figures, 1.1, but the more exact method leads to
relative error of 0.011 and an absolute error of 0.012, so that writing the
result with three significant figures, 1.11, is appropriate.

When propagating errors through more complex expressions, two
or more steps of error estimation may be needed. For example,

29.7 x (7.250 + 3.6554) = 29.7 x 10.905 = 324

Remember:

Approximate. rules for propagation of
errors:

- When adding or subtracting
numbers, the number of signif-

~ icant figures to the right of the
~ decimal determines the accu-
- racy of the result. - -

 When multiplying or dlwdmg
numbers, the total number of
significant figures determines
the accuracy of the result.
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The International
System of Units

Dimensional calculations are greatly simplified if a consistent set of
units is employed. The three major reference dimensions for mechanics
are length, mass, and time, but length can be measured in units of
inches, feet, centimeters, meters, etc. Which should be used? The sci-
entific community has made considerable progress toward a common
system of reference units. This system is known as SI from the French
name Systéme International d’Unités. In SI, the reference units for
length, mass, and time are the meter, kilogram, and second, with sym-
bols m, kg, and s, respectively.

To express quantities much larger or smaller than the standard
units, multiples or submultiples of these units are used, as shown in the
Table 1-1. Thus, 107'? s is a picosecond (ps), and 10* m is a kilometer
(km). Since for historical reasons the SI reference unit for mass, the
kilogram, already has a prefix, multiples for mass should be derived by
applying the multiplier to the unit gram rather than to the kilogram.
Thus 10~ kg is a microgram (107° g), abbreviated pg.

Table 1-1 Multiples and Submultiples for Units

Prefix Abbr. | Multiplier | Prefix Abbr. | Multiplier
deci d 107! deka da 10
centi c 102 hecto h 10?
milli m 10 kilo k 10°
micro u 10 mega M 106
nano n 10°° giga G 10°
pico p 10712 tera T 102

Many non-SI units remain in common use; some of these are given
in the Table 1-2.

Compound units can be derived by applying algebraic operations to
the simple units. For example, the SI units of volume and density are m?
and kg/m?, since

Volume = length X length x length = m X m X m = m?

. kg
density=—Mass - 25
ty volume m’
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Table 1-2 Some SI and Common Non-SI Units

Quantity Unit Name Unit Symbol Definition
length angstrom A 1071 m
inch in 2.54x 102 m
cubic meter m? (SI unit)
volume liter L 103 m3
cubic centimeter cm’, mL 105 m3
— atomic mass unit u 1.6605x102"kg
pound 1b 0.45359 kg |
density gEalll per g/mL or 10° kg/m?
milliliter g/cm’
force newton N kg-m/s? (SI unit)

Note that symbols for multiplied units may be separated by a dot or a
space, e.g., kges or kg s. Symbols for divided units may be written with
a solidus or an exponent, e.g., m/s or mes™' or m s,

Temperature is an independent dimension which cannot be defined
in terms of mass, length, and time. The SI unit of temperature is the
kelvin (K), defined as 1/273.16 times the triple point temperature of
water (the temperature at which ice, liquid water, and water vapor coex-
ist at equilibrium). 0 K is the absolute zero of temperature.

On the Celsius (or centigrade) scale, a temperature difference of
1°C is 1 K (exactly). The normal boiling point of water is 100°C, the
normal freezing point 0°C, and absolute zero —273.15°C. On the
Fahrenheit scale, a temperature difference of 1°F is 5/9 K (exactly). The
boiling point and freezing point of water, and absolute zero are 212°F,
32°F and —459.67°F, respectively. Conversions from one temperature
scale to another make use of the following equations:

t/°C = T/K - 273.15
t/°F = (9/5)(1/°C) + 32
In these equations, we have used a particularly convenient notation:
t/°C, T/K, and #/°F refer to the numerical values of temperatures on the

Celsius, Kelvin, and Fahrenheit scales. By dividing the temperature in
degrees Celsius by 1°C, we obtain a pure number.
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There Is Good News and
Bad News!

The good news is that the Sl sys-
tem of units is consistent so that sub-
stitution of quantities with S| units into
an equation will give a result in Sl units.

The bad news is that many chem-
ical calculations involve non-Si units.

Dimensional Analysis

Units are a necessary part of the specification of a physical quantity.
When physical quantities are subjected to mathematical operations, the
units must be carried along with the numbers and must undergo the
same operations as the numbers. Quantities cannot be added or sub-
tracted directly unless they have not only the same dimensions but also
the same units, for example:

6L+2L=8L (5 cm)(2 cm?) = 10 cm?

In solving problems, one often can be guided by the units to the
proper way of combining the given values. Some textbooks refer to this
method as the factor-label or unit-factor method; we will call it dimen-
sional analysis. In essence, one goes from a given unit to the desired
unit by multiplying or dividing such that unwanted units cancel. For
example, consider converting 5.00 inches to centimeters, given the con-
version factor 2.54 cm/in. We might try two approaches:

5.00in x5l —=1.97in"em  5.00inx 233CM =13 7¢m
2.54cm n
The first try gives nonsensical units, signaling a misuse of the conver-
sion factor. On the second try, the inch units cancel, leaving the desired
centimeter units.
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Estimation of Numerical
Answers

If you input the numbers correctly into your calculator, the answer will
be correct. But will you recognize an incorrect answer? You will if you
obtain an approximate answer by visual inspection. Especially impor-
tant is the order of magnitude, represented by the location of the deci-
mal point or the power of 10, which may go astray even though the dig-
its are correct. For example, consider a calculation of the power
required to raise a 639 kg mass 20.74 m in 2.120 minutes:

639kgx20.74m x9.81 ms*
2.120 min X 60 s/min

This example involves concepts and units which may be unfamiliar to
you, so that you can’t easily judge whether the result “makes sense,” so
we’ll check the answer by estimation. Write each term in exponential
notation, using just one significant figure. Then mentally combine the
powers of 10 and the multipliers separately to estimate the result:

6x10°x2x 10" x1x 10" _ 12x10°
2x6x10' 12x 10

The estimate agrees with the calculation to one significant figure, show-
ing that the calculation is very likely correct.

=1022J/s = 1022 watts

=1000

Problems

1.1  The color of light depends on its wavelength. Red light has a
wavelength on the order of 7.8 X 10~7 m. Express this length in
micrometers, in nanometers, and in angstroms.

Ans. 0.78 um, 780 nm, 7800 A

1.2 The blue iridescence of butterfly wings is due to striations that
are 0.15 um apart, as measured by an electron microscope. What
is this distance in centimeters? How does this spacing compare
with the wavelength of blue light, about 4500 A?

Ans. 1.5 x 107° cm, 1/3 the wavelength

1.3 In a crystal of Pt, individual atoms are 2.8 A apart along the
direction of closest packing. How many atoms would lie on a
1.00-cm length of a line in this direction? Ans. 3.5 x 107

1.4 The bromine content of average ocean water is 65 parts by
weight per million. Assuming 100% recovery, how many cubic
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meters of ocean water must be processed to produce 0.61 kg of
bromine? Assume that the density of sea water is 1.0 x 10° kg/m?.

Ans. 9.4 m?
Find the volume in liters of 40 kg of carbon tetrachloride, whose
density is 1.60 g/cm’. Ans. 25 L

A sample of concentrated sulfuric acid is 95.7% H,SO, by
weight and its density is 1.84 g/cm?. (a) How many grams of pure
H,SO, are contained in one liter of the acid? (b) How many cubic
cennmeters of acid contain 100 g of pure H,SO,?

Ans. (a) 1.76 X 10° g; (b) 56.8 cm?
A quick method of determining density utilizes Archimedes’
principle, which states that the buoyant force on an immersed
object is equal to the weight of the liquid displaced. A bar of
magnesium metal attached to a balance by a fine thread weighed
31.13 g in air and 19.35 g when completely immersed in hexane
(density 0.659 g/cm?). Calculate the density of this sample of
magnesium in SI units. Ans. 1741 kg/m3
A piece of gold leaf (density 19.3 g/cm?) weighing 1.93 mg can
be beaten into a transparent film covering an area of 14.5 cm’.
What is the volume of 1.93 mg of gold? What is the thickness of
the transparent film in angstroms?

Ans. 1.00 x 10 em?, 690 A

Sodium metal has a very wide liquid range, melting at 98°C and
boiling at 892°C. Express the liquid range in degrees Celsius,
kelvins, and degrees Fahrenheit.  Ans. 794°C, 794 K, 1429°F
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Composition

v/ Chemical Formulas from Mass
Spectrometry

Atoms and Isotopes

In the atomic theory proposed by John Dalton in 1805, all atoms of a
given element were assumed to be identical. Eventually it was realized
that atoms of a given element are not necessarily identical; an element
can exist in several isotopic forms that differ in atomic mass.

10
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Every atom has a positively charged nucleus and one or more elec-
trons that form a charge cloud surrounding the nucleus. The nucleus
contains over 99.9% of the total mass of the atom. Every nucleus may
be described as being made up of two different kinds of particles, pro-
tons and neutrons, collectively called nucleons. Protons and neutrons
have nearly the same mass, but only the proton is charged, so that the
total charge of a nucleus is equal to the number of protons times the
charge of one proton. The magnitude of the proton charge is equal to
that of the electron so that a neutral atom has an equal number of pro-
tons and electrons.

The atoms of all isotopes of an element have the same number of
protons, the atomic number, Z. The nuclei of different isotopes differ,
however, in the number of neutrons and therefore in the total number of
nucleons per nucleus. The total number of nucleons is A, the mass num-
ber. Atoms of different isotopic forms of an element, nuclides, are dis-
tinguished by using the mass number as a left superscript on the symbol
of the element, e.g., °N refers to the isotope of N with mass number 15.

You Need to Know
Atomic nuclei contain protons
and neutrons.

* An element is defined by the
- nuclear charge; the atomic num-
- ber Z = number of protons.

* Mass number A = no. protons +
- no. neutrons. : ;

Relative Atomic Masses

Because the mass of an atom is very small, it is convenient to define a
special unit that avoids large negative exponents. This unit, called the
atomic mass unit and designated by the symbol u (some authors use the
abbreviation amu), is defined as exactly 1/12 the mass of a '*C atom.
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Thus the mass of a '2C atom is exactly 12 u. The masses and abundances
of some other nuclides are listed in Table 2-1.

Naturally occurring silicon is 92.23% 28Si, 4.67% *°Si, and 3.10%
30Si. For chemical purposes, it is sufficient to know the average mass of
a silicon atom in this isotopic mixture. These average masses are desig-
nated by A (E), where E is the symbol for the particular element. For
example, the average mass of silicon atoms is

A (S1) = 0.9223%x27.977 + 0.0467x28.976 + 0.0310x29.974 = 28.085

The term atomic mass will be understood to mean average atomic
mass; nuclidic mass refers to one particular isotope of an element.
Atomic masses are used in nearly all chemical calculations.

Table 2-1. Some Nuclidic Masses in Atomic Mass Units

'H 99.985% 1.00783 u 160 99.76 % 15.99491 u
H 0.015 2.01410 170 0.04 16.99913
2¢ 98.89 12.00000 80 0.20 17.99916
13C 1.11 13.00335 288 92.23 27.97693
4N 99.64 14.00307 28i 4.67 28.97649
BN 0.36 15.00011 30si 3.10 29.97377
28 95.0 31.97207 g 4.22 33.96786
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Moles and Molar Masses

Most chemical experiments involve enormous numbers of atoms or
molecules. For this reason, the SI system of units defines the mole,
abbreviated mol, as the amount of a substance that contains the same
number of atoms as 12 g of '>C. This number is called Avogadro’s num-
ber, N, = 6.0221 x 10 mol~'. The mole thus is a counting term analo-
gous to “dozen.” Just as a dozen eggs corresponds to 12 eggs, a mole of
atoms is 6.0221 x 10% atoms. The mole can be applied to counting
atoms, molecules, ions, electrons, protons, neutrons, etc.—it always
corresponds to N, of the counted species. The mass of one mole of an
element with atomic mass A (E) uis N,A u or simply A g/mol, e.g., the
atomic mass of gold is 197.0 u or 197.0 g/mol.

One mole of atoms, molecules, ions,
etc., contains one Avogadro’s number
(N, = 6.0221 x 102 mol-") of that
_species.

The chemical symbol for an element—H, C, O, etc.—is used to
designate that element. Molecular substances consist of independent
molecules containing two or more atoms bound together. A molecular
formula specifies the identity and number of the atoms in the molecule.
For instance, the formula for carbon dioxide is CO,, one carbon atom
and two oxygen atoms. The molecular mass of CO, is A(C)+2A(0)=
12.0107 + 2 % 15.9994 = 44.0095 u. The molar mass of CO, is the mass
in grams numerically equal to the molecular mass in u, 44.0095 g/mol,
i.e., 44.0095 g contains N, CO, molecules.

Many common substances are ionic, e.g., sodium chloride, NaCl. A
crystal of NaCl contains sodium ions, Na*, and chloride ions, CI-,
arranged in a regular spatial array. Although there are no NaCl mole-
cules, the formula indicates the relative number of atoms of each ele-
ment present in the crystal, and we can speak of the molar mass of
NaCl, 22.98977 + 35.4527 = 58.4425 g/mol, as the mass of sodium
chloride which contains N, sodium ions and N, chloride ions. We also
speak of the molar mass of an ion, e.g., OH~, 15.9994 + 1.00794 =
17.0073 g/mol, as the mass of N ', hydroxide ions.



