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Preface

The Seventh Workshop on Nonlinear Evolution Equations
and Dynamical Systems (NEEDS '91) took place at Baia Verde
near Gallipoli, in Southern Italy from June 19 to June 29,
1991. This workshop followed the same pattern, both
organizationally and scientifically, as the previous ones,
held in Crete (Greece, 1980,1983 and 1989), in Baia
Verde (Italy, 1985), in Balaruc les Bains (France, 1987)
and Dubna (USSR, 1990). Its main purpose was to bring
together, from all over the world, scientists engaged in
researches on nonlinear systems, either interested in their
underlying mathematical properties ‘or- in ‘their” physical
applications. : N o - ’

A special effort was made to ensure a large attendance by
researchers coming from countries with nonconvertible
currency. There were 77 participants from 22 countries: Italy
(20), USSR(14), France:(6); Japan (6), Canada (4), Poland i(4),
Germany (3), Turkey (3), Belgium (2), Spain (2), USA (2),:
Australia, Bulgaria, -Finland, Helland, India, Korea, South
Africa, Sweden, Switzerland, Taiwan, UK (1). Lo

Remarkably, almost all participants gave a lecture: 26 long
lectures. (45 minutes), 44 short talks (30 minutes) and 6 posters.
The topics discussed included integrable, near integrable and
nonintegrable evolution equations and dynamical systems. The
talks ranged from pure mathematics through numerical
computations and applications to various field of physics. In-
addition to the scheduled program, many informal exchanges of
ideas and free discussions enriched the workshop.

This volume includes in written form most of the talks
given at the meeting. So it is devoted to current research in
nonlinear evolution equations and dynamical systems. In our
opinion, for the large variety of topics that have been covered,
and for the quality of the contributions, these proceedings give a
good up-to-date picture of the state of art in the field. They do
not provide an exhaustive self-contained description of the
whole subject, but rather give an outline of the most recent and
relevant results in such a way that they should stimulate the
interested reader. :

The NEEDS series of workshops demonstrate once more
that broad international collaboration is effective and fruitful in
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the Nonlinear Science field. This subject benefits from the
cooperation of specialists, working in fields ranging from pure
mathematics to the applied science. These features were
underlined during the presentation of the European Institute
for Nonlinear Studies via Transnationally Extended
Interchanges (EINSTEIN), created in Lecce (Italy), with the aim
to pursue 1) the organization of international meetings and
long duration workshops in the realm of Nonlinear Science, 2)
the exchanges of scientists coming mainly from Western
countries, Eastern Europe and the countries of the ex-USSR, 3)
to stimulate fast exchanges of information, as well as to perform
jointly large computational tasks via efficient computer
connections.

The Workshop NEEDS '91 was organized by researchers
from the University of Lecce (Italy), and they would like to
thank the creator of the NEEDS series, Prof. F. Calogero from
the University of Rome, for his continuous encouragement.
The meeting was sponsored by the University of Lecce and by
the Istituto Nazionale di Fisica Nucleare (INFN), Italy.

The organizers took advantage of the services of the
Dipartimento di Fisica of Lecce University. They wish in
particular to thank Mr F. Spagna, Mrs A. Vergori, who all
together took care of the good working of the meeting, and in
particular way Mrs M. C. Gerardi, who actively participated in
the organization of the workshop. The Editors of the present
Proceedings wish to thank all the authors, who sent their
contributions. The original style of presentation has been
preserved, and only minor misprints have been corrected
where possible. Finally the Editors wish to aknowledge Mr Gino
Pastore for the beautiful drawing of the cover.

Lecce
January 1992 - M. Boiti
L. Martina
F. Pempinelli
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SELF DUAL YANG-MILLS EQUATION AND NEW SPECIAL
FUNCTIONS IN INTEGRABLE SYSTEMS

S. CHAKRAVARTY, M. ). ABLOWITZ
Program in Applied Mathematics, University of Colorado
Boulder, CO 80309 USA.

4and"

L. A. TAKHTAJAN
Program in Applied Mathematics, University of Colorado
Boulder, CO 80309 USA.
and
Steklov Mathematical Institute, nab. Fontanka 27
St. Petersburg, 191011 USSR.

ABSTRACT

The Self Dual Yang-Mills equations admit reductions to many of the well
known integrable soliton systems. By allowing the gauge potentials to be elements
of suitable infinite dimensional Lie algebras a novel class of nonlinear systems are
obtained as reductions of the self dual equations. Some of these new systems them-
selves have reductions to the classical Chazy equation which has as its only movable
singularities, a natural A

1. Introduction

In recent years much work has been devoted to the intriguing possibility that the Self-
Dual Yang-Mills (SDYM) equations and its generalizations may be viewed as a "master
equation” in which the well known soliton equations are embedded. Indeed Ward! made
such a conjecture and showed that some of the well known integrable nonlinear equations
arising in widely different areas of mathematical physics could be obtained by a reduction
of variables of the SDYM equations with appropriate choices of the gauge group in which
the gauge potentials reside. Subsequent work by several authors2-3 have shown that the
equations obtained as reductions of SDYM equations is quite large, and that virtually all of
the “classical” soliton equations can be obtained.

Significantly, new possibilities arise when the potentials are allowed to lie in an infinite
dimensional Lie algebra. In this note we discuss a novel system, regarded as an extension
of the well known Nahm? equations, that is obtained from the SDYM equations associated
with a particular infinite dimensional Lie algebra, namely the volume preserving
diffeomorphisms on S3. In 0+1 reduction, this new system is related to a classical, third
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order, nonlinear differential equation studied by Chazy3. This equation has movable natural
boundaries in the complex-plane and consequently adds to the richness of the exactly
solvable systems. As such it is different from the soliton systems since, generally
speaking, reductions of exactly solvable equations are of Painleve type, i.e., their movable
singularities are poles. Moreover, it can be shown that the solutions of the Chazy equation
may be written in terms of modular forms. The new systems we have found can be
expected to have solutions which are in a sense generalized modular forms. This, in a way,
is analogous to how Riemann theta functions of finite genus generalize the classical Jacobi
theta functions as solutions of the underlying soliton systems.

2. Preliminaries

It is standard to formulaté the YM equations in terms of the curvature,

Fap =aaAb_abAa+[Aava] (1a)
where 9= 0/0x®, x2 = {t = x, xi}, i = 1,2,3 being the coordinates in Euclidian space E4.
The A,'s are the YM connection 1 - forms (gauge po(enuals) and take values in some Lie
algebra. The SDYM field equanons are given by :

i = J—z &;jkFix ‘ (1b)

where Eijk is an alternating tensor with £123 = l Eq. 1(b) follows from the standard
definition of duality in E4. Note that the SDYM equations (1b) are invariant under the
gauge transformation : A; = gAag™! — (9a8)g"! for any differentiable function g = g(x2)
taking values in the corresponding Lie group. Eq.1(b) can be obtained as the integrability
condition of a pair of linear PDE's parametrized by a complcx spccnal parameter —
commonly refem:d to as the Lnx palr

3. One Time (0+l) Reductlons ;

We let the Ay's to be only functions of the t (ume) coordinate. Then the available gauge
freedom allows us to choose the time-component of the vector potential A, =0 by a
suitable choice of the function g = g(t) mentioned in Section II.The reduced SDYM
equations take a very simple form when expressed in terms of the Ay's as can be easily

seen by using Eqgs.1(a) and 1(b) )
QA = ~Z eijlAjALl T
These ODE's are known as the Nahm equauons when the Ag's belong to a simple Lie

algebrae.g. su(n) ‘They were introduced by Nahm? to construct static solutions of non-
abelian magncuc monopoles in E3 Specxﬁcally, we will take the A{'s in the Lie algebra

su(2) genemed by the traceless skew-hermitian matrices oj, i = 1,2,3 ‘satisfying the

commutatiok telations: [0 , oj] = X¢; %kdk We will give wo simple examples of su(2) -
mduchon’s it;f‘Bq 2 which will be helpful in our later discussions regarding the extensions
of thése ‘equations for infinite dimensional Lie algebra.

Example :
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- The first system of equations are obtained by semng Aj =;0j(t) (no sum) in Eq.2 and
using the commutation relations for the Gj's: .

gy =y~ - ) (3a)
Oy = W13, - (3b)
oy =M - ‘ (30)

This system of equanons can be transformed easily to the Euler equations of motion for a
rigid body with no external force. [nfact,itlssu'alghtforwardtoseematEq3canbe

integrated. From Eqs. 3(a) and (b) we see that the quantity K = @2 - @,? is a constant.
Next, mtmduce a function ¢(t) such that i ’
®; =Kcosh, @y =KSsinh “)
and subsnmtc Eq.4 in cither of Egs. 3(a)or (b). We have that 07} can be expressed as
w3 = 3t¢ Usmg this in Eq.3(c) one obtains a second order ODE for ¢ )
: Oud = (K2/2)sinh(29) o (5

which then can be integrated to obtain solutions for the @'sin terms of Jacobi elliptic -
functions. Thus the solutions for Eqs &ateessentmlly the same as that of the Euler "top”
equations. ‘ ,

Example II :

There exists another interesting reduction of the su(2) Nahm equations if one makes the
following choice for the vector potentials
Ayp=ac1+boy, Apy=-boj+acy ~Ajz=coy (6)
where a, b, and ¢ are functions of t to be determined and the oj's satisfy the above

commutation relations. Substitution of Eq.6 in Eq.2 yields the following set of ODE's for
the functions a, b, and ¢

da=ac . 7(a)
otb=bc _ ' 7(b)
oc=2a2+b? 7(c)

A similar calculation as that of Eq. 5 shows that Egs. (7) can be reduced to a single second
order ODE as in Example I

attll = KC2u (8)
with K constant. The functions a,b, and ¢ can be expressed in térms of u(t) as
at) = Ae¥,  b(ty=BeY, c(t)=du ©)

where A, B are constants and K = A2 + B2, Eq.8 can be integrated in quadratures and
solutions for a,b and ¢ can be represented in terms of trigonometric functions.
We summarize our discussions above by the following remarks:

1. The corresponding system of equanons (Eqgs.3 and 7 admn complex analytic solutions
which are either singly periodic (trigonometric functions) or doubly periodic (elliptic
functions) and meromorphic i.e., the only singularities are isolated simple poles in the
complex t - plane

2. The examples of Eq.2 considered above only involve su(2) as the underlymg gauge .
algebra. The situation is not dramatically different if one considers other finite dimensional
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Lie algebras. For example, it has been shown by HitchinS that if the Aj's in Eq.2 are in the
Lie algebra su(n) and satisfy certain conditions, then:their solutions are meromorphic in the
complex t-plane and can be represented as ratios of Jacobi theta functions.

3. Itis also possible to construct the solutions of the Nahm equations associated with finite
dimensional Lie algebras by using the global analytic solution of the underlying Lax pair.
These solutions are defined on a Riemann surface of finite genus often referred to as the
"spectral curve”. The spectral curve corresponding to su(2) Nahm equations is an elliptic
curve.

The situation is completely different when the A;'s are allowed to li¢ in an infinite
dimensional Lie algebra. In particular, we consider.the Lie algebra of volume preserving
diffeomorphism of a 3-sphere — sdiff(S3). We devote the remainder of this section to
another SDYM reduction which we refer to as the Halphen systcm7 We will show that the
resulting equations are still in lgrablc but the solution structure is entirely different from the
systems discussed above. The Halphen equations can be reduced 10 a third order, nonlinear
differential equation. which admits a natural boundary in the complex t-plane and their
solutions can be represented in terms of automorphic forms of fixed weights defined by
their transformations under the group SL(2,C) acting projectively onto the complex t-plane.

It is convenient to coordinatize 83 in terms of the Euler angles:0<0<mx, 0<¢<m,

and 0 < y < 4x. The particular generators of sdiff(S3) that we choose are the vector fields:

X1 = cosyadg + (siny/sin)dy — cotBsinydy, ,

X3 =— sinydg + (cosy/sinB)dy — cotBeosydy, ,

X3 =0y ) (10a)
The Xj's are called the rotational Killing vectors of S3 = SU(2), i.e., they leave the
standard metric on $3 and the compatible volume form (the Haar measure on SU(2))
invariant under their action. Furthermore, one can directly verify from their defining
relations — Eq. 10(a) that the Xj's satisfy the same commutation relations as the generators
of the Lie algebra so(3)

XiXj] = Z &k Xk (10b)

where the bracket denotes the Lie derivative t!:)r vector fields. It is very important to note
however, that the two Lie algebras are entirely different. The generators of so(3) form a
three dimensional vector space whereas the linear combinations of the Xj's with
coefficients which are arbitrary functions of the Euler angles, span an infinite dimensional

Lie algebra.
The A; s are expressed as
Ai = Y Pij(10.0.9)X; (11a)
The matrix P is chosen to be the prodjuct
P = 0(6,0,y)M(1) (11b)

where, O € SO(3) is the usual rotation matrix and M(t) is a 3 x 3 matrix of field variables.
Substituting the A;' s from Eq 11(a) in Eq.(2) we get

2 P35 = Z €ikPsPis[Ar, Agl + ): EiikPirA(Pys)A, (12a)

The second tcrm of the rhs of Eq 12 is the contnbutlon from the Lie derivative due the
action of the vector fields X; 's on O;;(8,9,y) which is given by



