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Foreword

On October 2023, 1953 the National Academy of Sciences—National

Rescaren Council and the International Mathematical Union sponsored a con-
ference on Operator Theory and Group Representations, held at Arden House,
Harriman, New York. :

A record of the addresses delivered at the various sessions follows:

Tﬁesday, October 20 (evening):
Hawimos, P. R., Subnormal operators
WERMER, J. Restrictions of operators
Wednesday, October 21 (morning):
Mackey, G. W., The present status of the theory of group repre-
sentations
Seean, I. E., Non-commutative integration
Wednesday, October 21 (afternoon):
MavuTNER, F. 1., Ergodic double cosets
Arens, R. F., Group algebras of ordered groups
. Hewsown, H., Bounded groups in algebras of measures
Thursday, October 22 (morning):
Kapison, R. V., The full linear group of a factor
SINGER, I. M., The automorphism group of a factor
Dyg, H. A., Unitary groups in a factor
Thursday, October 22 (afternoon): “
Harise-CHANDRA, Representations of Lie groups

Thursday, October 22 (evening): ,

KarLANsSKY, 1., ‘Modules over operator algebras
Loowmis, L., Lattices and rings of operators . -

Friday, October 23 (morning):

- Heinz, E., Inequalities for operators
RernuicH, F., Linearly perturbed operators

The organizing committee is very grateful to Professor Kadison for his

report on Operator Algebras; to Professor Singer for his report on Group Repre-
sentations; to Professor Wermer for his report on Subnormal Operators; and to
Dr. Heinz and Professor Rellich for their contributed papers.

G. W. MACKEY
M. H. StoNE
1. Karransky, Chairman,
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Report on Subnormal Operators

By J. Werrher

Let A be a bounded normal operator on a Hilbert space 3 and let  be a
closed subspace of J invariant under A. The restriction B of A to $ is then a
bounded operator on the Hilbert space $. Halmos calls B subnormal.

The following questions now arise:

1. When is a given operator B subnormal, i.e., when can its space of defini-
tion § be embedded in a larger space S so that B turns out to be the restriction
of some normal operator on J?

2. What is a concrete representation of .37

3. What is the relation of the spectrum of B to that of the normal operator 4?

4, Does B always have non-trivial invariant subspaces?

Question 1 was answered by Halmos in [1] with the folowing theorem (simpli-
fied in its hypotheses by Joseph Bram):

B is subnormal if, and only if, jfor every set xo. 21, - - - x, of vectors in O, the
matriz whose general entry is (B'z;, Biz,) is positive.

Suppose next that © has a single generator under B, ie., for some 2 in .9,
the vectors B™z, n 2 0 span §. Let X be the spectral measure for the normal
extension of B and let di = d || Fxz || *. Then u is a positive measure with com-
pact carcier. Let H, be the closed subspace of the L -space formed from u which
is spanned by polynomials. Then B is equivalent to the operator on H, of multi-
plication by A. (This was pointed out by Singer.)

The structure of the space H, is however in general not at all evident and
this representation does not yield an answer to question 4.

In answer to question 3 Halmos showed in [2]: If A is normal on &, B the re-

“striction of A to ©, and. if there is no proper subspace of I which conlains $ and

reduces A, then the specirum of B (as operator on ) includes ihe spectrum of A
fas operator on X).

Question 4 was given a partial answer by Wermer as follows. Let 4 be a
normal operator, o(A) its spectrum, p(A4) its resolvent set, Rx its resolvent and
let # be the spectral measure of A.

TueorEM. Kei ¢(A) have two-dimensional Lebesgue measure null. Then for
every resiriclion B of A to o subspace D, B has a non-trivial invariant subspace
m D. :

Proor. Set $° = {y in O | By e O for all A in p(A)}. Then cleariy H* is a
closed subspace of 9, invariant under A.

We elaim A* also leaves § invariant. For else there is some 7 in %, A*y ¢ .
Hence there exists g, ¢ L =, (A*y, g) > 0. But since y ¢ H°, Ry ¢ H” for each
X and 8o

y F s
(Bay, 9) = f’ HETN d(Ey, g) = 0 for X in p(4).

1



2 ; SUBNORMAL OPERATORS

Hence
[ +@® aEw, 0 =0

for every rational function with all its poles in p(4). By [3], every continuous

function on o(A) is uniformly approximable by such rational functions on

o(4), since o(4) has measure, zero. '
Hence d(Ewy, g) is the null measure, whence

(4%, 0) = [EdEw, 0) = 0.

This is a contradiction. Hence A*$” C £, as asserted. )

- Thus B is normal on $°. If then ° = $, B is normal on P and so has non-
trivial invariant subspaceg. If ° = 9, Hz in P, 2 ¢ 9" . Hence for some Ao in
p(4), Brgz ¢ . ' ,

Set C = {yeD| Ry eD}. Cis a closed subspace of §, > 0 and invariant
under B. Also z ¢C; and so € # $. Thus B has & non-trivial subspace in this
case also. .
~ Subnormal operators share some properties with more general operators ob-

tained by restriction. (Cf. Wermer, [4].) '

Let r be a bounded operator with inverse 7 defined on an arbitrary Banach
space and C a closed r-invariant subspace, and let 7' denote the restriction of
rto C. : s

Turorem. Suppose C has a single generator under T. Then C 18 homomorphic
fo a space of analytic functions defined on part of the \-plane, T' being represended
as multiplication by \. The kernel of this homomorphism is

C° ={yeC|ryeC,n= 1,2, }

Corov. If C° = (0), then the ring of all operalors commuting with T is dso-
" morphic to a ring of bounded analybic funciions. A
Take now r in the preceding theorem to be a normal operator on Hilbert
space, and suppose o(r) has measure 0, and p(r) has two components, D de-
noting the bounded component. Then, if T' again means the restriction of = to
C we have: ; - «
TuroreM. C decomposes inio C° and its orthogonal complement C°. Both C*
audcﬁminvwiantunderT.OnC“,Tiamrmal,whileC’“isibom'phictoa
Hilbert space§ of analytic funciions on D and T ts represented on § as mulkiplica-
#ion by A. o
This theorem raises the question:
When is ¢ = C° and when is C = C*?
For the case when ~ is unitary, Kelmogoroff in [5] gives a necessary and suffi-
cient condition on the generating vector z of C' and the spectral measure of =
in order that ¢ = C°. In this case, furthermore, all closed invariant subspaces -
of the subnormal operator 7 on C° were determined by Beurling in [6]. For
certain other normal operators r conditions were given by Wermer in (7] assur-
ing that C = ™ for every restriction of .

rd
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Report on Operator Algebras
By Richard V. Kadison

The Arden House Conference was concerned with recent research in operator
theory, group representations, and their interconnections. In addition to the
formal twenty and forty minute addresses, there was considerable informal
discussion. It would be difficult to report accurately on the informal portion
of the conference and the results arising therefrom.

This section of the conference report will be devoted to a survey of the theory
of operator algebras and to the relation of those formal addresses which dealt
primarily with operator algebras to the broader aspects of this theory. We shall
omit all bibliographical references, since we could not hope to include reference
to all the papers which have directly contributed to the state of our present
knowledge about operator algebras in a report of reasonable size.

A C*-algebra is an algebra of operators on a Hilbert space which is closed
under the operation of taking the adjoint and closed in the operator bound
(uniform) topology. A C*-algebra is the natural infinite-dimensional analogue
of a finite-dimensional algebra of complex matrices closed under the operation
of taking the conjugate transpose (the topological conditions which might be
imposed, in the finite-dimensional case, are automatically satisfied by virtue
of the finite-dimensionality). These finite-dimensional matrix algebras are, of
course, special cases of C*-algebras. Their structure is completely described
by the Wedderburn theory (algebraically they are direct sums of total complex
matrix algebras of various orders and, with regard to their specific action on
the underlying space, they are direct sums of n-fold copies of total matrix
algebras of order m;, ¢ = 1, --- | k). In general terms, the central problem in
the study of C*-algebras is that of finding a structure theory which will do for
these algebras what the Wedderburn theory does for the finite-dimensional
C*-algebros.

Aside from their intrinsic interest as a natural class of infinite-dimensional,
semi-simple algebras, C*-algebras find application in the study of group repre-
sentations, mathematical formulations of physical situations, and certain phases
of ergodic theory. If we denote by G a locally compact group (assumed uni-
modular, for the sake of simplicity), by L,(@), Ly(G) the integrable and square
integrable functions on @ relative to Haar measure, respectively, then the func-
tions of L,(@) acting by (left) convolution on Ly(G) give rise to a family of
bounded operators on the (Hilbert) space Ly(@) closed under the adjoint opera-
tion. This family of operators and its closures (all of which are C*-algebras) in
the various operator topologies serve as generalizations of the complex group
algebra of a finite group. These group algebras play a crucial role in the study
of the group representations of G. The measure-theoretic properties of groups
of measurability preserving transformations on a measure space can be studied
by investigating the structure of the various C*-algebras obtained from the
operators derived from the action of the group on the Hilbert space of square
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- integrable functions over the measure space together with the operators arising
from multiplication by essentially bounded measurable functions on this space
of square integrable functions.

The methods used in the study of C*-algebras are quite diverse. Qf course,
the techniques derived from modern algebra are employed extensively. While
algebraic techniques are sufficient, almost exclusively, for dealing with the
finite-dimensional situation, they don’t begin to give the full picture in the case
of infinite-dimensional C*-algebras. The continuous as well as the discrete
(e.g., with regard to spectra) arises in the infinite-dimensional case, while it is
not present in the finite-dimensional situation. These considerations make the
tools of analysis, notably, complex function theory and abstract measure theory,
invaluable for the investigation of C*-algebras. In addition to these methods, a
special brand of point set topology which fashions a topological structure to
the algebraic and intrinsic geometrical structure has proved quite useful in
the study of C*-algebras. .

It should be remarked that we seem to be not too close to a final structure
theory for C*-algebras. We have no guesses as to how the general C*-algebra
is constructed from a ‘“canonical set” of fully understood C*-algebras. Aside
from this lack of a general theory, however, the subject bristles with simply
phrased\quite specific, “yes” or “no” questions for which we bave neither the
answer nor.reasonable guesses as to the answer.

A well-known result of Gelfand-Neumark tells us that a C*-algebra has an
inde&ndent algebraic existence, viz., a Banach algebra with a *-operation’
having the usual formal algebraic properties and satisfying, in addition, || aa* || =
{ @ | is isometrically *-isomorphic with a C*-algebra. Some years ago, M. H.
Stone proved a theorem about commutative C*-algebras which gave the alge-
braic portion of the spectral theorem a very cogent form. He showed that each
commutative C*-algebra is algebraically isomorphic to the algebra of all con-
tinuous, complex-valued functions on some compact-Hausdorff space (derived
from the algebraic structure of the C*-algebra) with the *-operation in the C*
algebra going into complex-conjugation of functions. He showed, moreover,
that the C*-algebra is determined to within algebraic isomorphism by the
homeomorphism type of the associated compact-Hausdorff space. The function
ring on each compact-Hausdorff space is easily seen to be a (commutative)
C*-algebra, so that the distinet classes of algebraically isomorphic, commuta-
tive C*-algebras are in 1-1 correspondence with the homeomorphism classes of
compact-Hausdorff spaces. For the purposes of operator theory, this is an ade-
quate algebraic deseription of such operator algebras. To a non-commutative
C*-algebra, one can again associate a structurally derived compact-Hausdorff
space and, this time, a distinguished linear subspace of continuous, complex-
valued functions on this compact-Hausdorff space. However, in this case, we
do not know canonical forms for the linear subspace taken together with the
compact-Hausdorff space, although the system characterizes the C*-algebra.

A commutative C*-algebra together with its action on its underlying Hilbert
space can be described by its associated compact space and a well-ordered chain
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of idesals of Borel sets in the space (each, the family of null sets of some measure).
Again, we do not have canonical forms for such a construct, but the problems
involved in obtaining such canonical forms are in the province of pure measure
theory and are already inherent in the classical unitary equivalence description
of the action of a single self-adjoint operator on a Hilbert space by Hellinger-
Hahn (of which the commutative C*-algebra result is an extension). Aside from
the original Hellinger-Hahn theory, Wecken, Plessner, Rohlin, Segal, Nakano,
and Halmos have contributed important techniques to this final formulation
of commutative multiplicity theory. It has become possible, recently, to make
an analogous study of the action of a not necessarily commutative C*-algebra
on its underlying Hilbert space, assuming the algebraic structure known. This
theory inherits, of course, all the problems of the commutative theory, but
seems, at this stage, to have no others.

The class of C*-algebras has several important subclasses which have received
special attention. Notable among these is the class of “‘rings of operators” (also
called ‘“W*-algebras”—those closed in the weak operator topology, i.e., the
weakest (coarsest) topology on the bounded operators in which all the linear
functionals of the form 4 — (Az, y) are continuous). The assumption that a
C*-algebra be weakly closed produces deep effects upon its structure, and the
additional algebraic and geometrical properties visible enable us to subject this
class of C*-algebras to & much more detailed analysis (though, by no means, a
definitive analysis, at this point of development of the subject). In particular,
rings of operators (containing the identity operator) contain, along with each
self-adjoint operator, its complete spectral resolution. J. von Neumann has
exhibited rings of operators as “direct integrals” (measure-theoretic generaliza-
tion of direct sum) of basic constituents called ‘“factors” (rings of operators
whose center consists of scalar multiples of the identity operator). Murray and
von Neumann have studied these factors in detail. By comparing the relative
sizes of the ranges of orthogonal projections in a given factor, M, a relative
dimension function D is defined on the projections in M (ha.ving the customary
-properties of & dimension finction) and'is shown to be unique to within a posi-
tive multiplicative constant. With the. aid of this dimension function, the fac-
tors are separated into three classes. The first class comprises the factors of type
1., those having minimal projections in which the (normalized) dimension
function takes the values 1, 2, -+, n (n finite or infinite). The second class
constitute the factors of type II; and II_ in which the dimension function takes
all values in [0, 1] and [0, =], respectively. These are the factors having no
minimal projections and containing a non-zero projection of relative dimension
different from . The final class consists of the factors of type III in which the
dimension of each non-zero projection is =. The factors of type I, are shown
to be algebraically *-isomorphic to the algebra of all bounded operators on an
n-dimensional Hilbert space. Associated with each factor on a Hilbert space,
one has the set-of operators which commute with it, which is again a factor of
type I, II, or 11T according as the original factor is of type I, I, or III, respec-
tively. If M is of type 1., M’ (the commutant of M) of type I., N is of type
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I, and N’ of type L., then M and N are unitarily equivalent. In general, if M
is a factor of type I or II with commutant 3" there is associated with M a con-
stant, the so-called ‘“‘coupling constan .2, If z is & non-zero vector in the under-
lying Hilbert space upon which M acts, the orthogonal projections E and £’
" on the closures of the linear manifolds spanned by the images of = under opera-
tors in M’ and M, respectively, lie in M and M /, respectively. The ratio of the
dimensions of E and E’, relative to M and M’, respectively, is the coupling
constant just mentioned (it is shown to be independent of the vector x chosen).
If N is another factor algebraically *-isomorphic to 3, with commutant N’ and
. coupling constant equal to that of A and M’ then M and N are unitarily equiva-
lent, and, moreover, the given algebraic isomorphism can be implemented by a
unitary transformation. This result does not apply per se to the case where M
is of type Il and M’ of type IL . Thislast case can be handled, however, by
suitable modifications of the above mentioned techniques. Recently, E. L.
Griffin has shown that (at least in the case of separsble Hilbert space) each
*_jsomorphism between factors of type III can be implemented by & unitary
. transformation between the underlying Hilbert spaces. The problems then, in
the study of factors and rings of operators, are largely ones of the algebraic
nature of these operator algebras.

By considering the weakly closed group algebras of various locally compact
topological groups, examples can be constructed of each of the various types of
factors. In point of fact, however, factors of type IIT were constructed, only
after much effort, by considering groups of measurability preserving transforma-
tions acting on measure spaces which do not admit group invariant measures..

In terms of the dimension function comstructed, a trace function with the
usual properties can be introduced in factors of types I, and II, . In terms of .this
trace function a topology can be imposed on the factor which is useful for the
study of its structural properties. .

Current research in the theory of operator algebras centers about the study
of factors of type II;. A broad class of factors of type i, the socalled “ap-:
proximately finite factors” in which any finite set of operators can be approxi-
mated as closely as desired in the trace topology by operators lying in a subring
of finite linear dimension, have been shown to be algebraically *-isomorphic
to each other. On the other hand, it has also been shown that there are factors
of type II; which are not of the same algebrsic type ks the approximately finite
factors. This is effected by showing that the approximately finite factors of
type 1L, possess an approximate (relative to the trace topology) commutativity
property which the weakly. closed group algebra of certain groups does not-
have (e.g., the free group on two generators). ‘

With regard to the study of factors and, more generslly, rings of operators,
one of the important projects involves the analysis of the structure preserving
maps. Atahe Arden House Conference, I. M. Singer presented some of his
recent results concerning the automorphisms of factors of type II; . He considered
factors of type II arising from groups of mesasure-preserving transformations

" acting ergodically upon a finite, non-atomic measure space. Roughly speaking,
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the measure preserving transformations induce unitary operators on the

Kronecker product of the Hilbert space of square integrable functions on the
group with the Hilbert space of square integrable functions on the measure
space. This group of unitary operators taken together with the algebra 4 of
operators obtained from the multiplication action of essentially bounded meas-
urable functions on the measure space generate a factor M of type IT, . The
subalgebra A of M can easily be shown to be a maximal abelian subalgebra
of M. Singer studies the group ¢ of *-automorphisms of 3 which leave 4 set-
wise-invariant and its normal subgroup Gy consisting of those autornerphisms
in G which leave 4 elementwise invariant. He describes G in terms of the original
group of measure-preserving transformations. In particular, he proves that G
is the semi-direct product of @; and another group described in terms of the
original constructions. A neat statement of these results in cohomological terms
was presented By these means, Singer can show that, in many cases, where
the outer automorphisms themselves are not apparent, the factor in question
must admit *-automorphisms which are not inner. The present author bad
raised the question of whether.or not a factor of type II; (or, more generally, &
ring of -operators) cheys sowme sort of Galois theorem relative to its group of
-automorphlamﬂ (such is the case for rings of type I). Singer answers this
question negatively on the basis of his general t.mhmqueb with specific examples.
Relating to the question of structure preserving maps of operator algebras,
I. Kaplansky presented results concerning derivations of certain classes of
C*-algebras. It is appropriate, at this point, to note another trend in current
research on uperator algehras. Various subclasses of C*-algebras more accessible,
structurally, than the general C*-algebra are considered. One of the main pro-
ponents of this approach is 1. Kaplansky who has developed & reasonably de-
tailed structure theory for a class of C*-algebras he calls “CCR algebras’ (those
admitting sufficiently many representations by slgebras of completely eon-
tinuous operators). He has introduced a class of algebras he calls AW*-algebras
" (abstract W*-algebras). This class of C*-algebras embodies the main algebraic
features of W*-algebras while being algebraically defined (it is & broader class
than the W*-algebras). Kaplansky and others have pursued the program of
carrying over to the AW*-algebras the known algebraic properties of W*-
algebras, as well as trying to extend the known theory of W*-algebras in terms
of AW*-algebras. In his conference talk, I. Kaplansky introduced a coustruet
which he calls a “C*-module”. It is a module with an abelian C*-algebra as
operator ring and an “inner product” with values in the abelian C*-algebra.
This construct may prove to be a very convenient tool for the investigation of
operator algebras and for providing new examples of operator algebras (espe-
cially, if the general theory can be extended to not necessarily commutative
rings of operators). Kaplansky discussed the general theory of his C*.modules
but specialized, in a short time, to the case where his C*-algebra was an AW*-
algebra and the module over this algebra satisfies two additional algebraic
assumptions. Such C*-modules, he calls AW*.modules, and, for these, he carries
the general theory much further. With the aid of this new device, Kaplansky
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then settles an open existence. question for certain classes of AW*-algebras.
Among other things, he proves that each derivation of an AW*-algebra of type I
is inner, basing his argument on a lemma due to Singer.

The study of facters leads one to the study of various algebraic structures
attached to these factors. In particular, the group of all unitary operators in
factor and the group of all inverfible operators in a factor have attracted a
certain amount of attention recently. Henry A. Dye talked on the unitary group
in a factor of type I1J,, and showed that certain isemorphisms between the
unitary groups of such factors give rise to *-isomorphisms or *-anti-isomorphisms
between the factors. In thig conneetion, I. Singer has shown that a Lie algebra
isomorphism between factors of type II; satisfying certain slight continuity
conditions implies the existence of a *-isomorphism between the factors. I. Ka-
plansky has relaxed these conditions somewhat. The present author talked on
the structure of the unitary and general linear groups of a factor. A complete
list of the uniformly closed normal subgroups was given. It might be remarked
that these groups are a natural generalization of the classical groups. L. Loomis
talked on a general ordered structure resembling the order structure of the pro-
jections in a factor. For such structures, Loomis is able to develop a dimension
theory, but, without the added structure of a factor, his techniques must be
more delicate than those employed by Murray and von Neumann to define a
dimension funetion on {actors. )

Another important frend in current research on operator theory is the global
investigation of rings of operators. As noted earlier, a ring of operators admits
a type of measurable decomposition into factors, relative to its center. This
foeuses attention on the study of factors. In reality, however, the passage from
information about the factors in a decomposition to information about the ring
from which they derive is rarely smooth, involving, as it generally does, thorny
difficulties of a measure-theoretic and operator-theoretic nature. Since rings
rather than factors arise in applications, it is desirable to have some global
techniques for dealing with them rather than passing to the factor decomposi-
tion. Dixmier, Dye, Godement, Griffin, Kaplansky, Segal, and others have
developed such techniques. Dixmier systematically investigated the center-
valued trace in rings of operators. Kaplansky’s work on AW#*-algebras con-
tributed heavily to our global techniques. The methods used are a rather in-
teresting mixture of classical measure theory and modern operator theory,
which have their roots in the early work of Murray and von Neumann. 1. E.
Segal formalized this interrelation between measure theory and operator theory
in a non-commutative integration theory. It should be noted that the measure
space rather than the range of values is the non-commutative object (the measur-
able sets corresponding to the projections in a ring of operators and the integra-
tion process corresponding to a trace like linear functional). Surmounting con-
siderable technical difficulties, Segal proves non-commutative analogues to the
Riesz-Fischer and Fubini Theorems as well as other classical measure-theoretic
theorems. At the conference, Segal talked on an extension of dimension
theory to arbitrary rings of operators without a finiteness assumption. He
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discussed a cardinal-valued integration theory appropriate to this extension.
Segal also discussed non-commutative extensions of probability theory. He
defined a (not necessarily commutative) abstract probability space and proved,
among other things, the (non-commutative) analogue of the Kolmolgoroff
theorem concerning the existence of random variables having preassigned joint
distributions (satisfying certain necessary consistency conditions). In the
process, Segal, gives a systematic treatment of direct limits of rings of operators.
- It would be rash to say that we are confident of an early solution to the central
problems still facing us. Nevertheless, though these problems seem quite diffi-
cult and recent progress slow, many of us have hope for a useful structure theory
for self-adjoint operator algebras in the not too distant future.

Corumsra UNIVERSITY
New York, New Yorx



Report on Group Representations
By I. M. Singer

1. Introduction. The group representation gection of the Arden House

conference consisted of five lectures, three on group representations proper and
two on related topics. Specifically, Mackey gave a partially expository lecture
on the present status of group representations, Harish-Chandra described a
Plancherel formula for complex semisimple Lie groups, and Mautner discussed
geodesic flows on manifolds. Helson spoke on isomorphisms between group
algebras and Arens on group salgebras of ordered groups.
" Woe feel that the clearest discussion of the talks given can be carried out in
the context of a general review of group representations. Much' of this review
is based on an outline given to us by Mackey of his talk. We claim sole responsi-
bility for the omissions and errors which may have occurred. In particular, we
have not discussed explicitly spherical functions, generalized trace functions,
and positive definite functions. We wish to point out that the bibliography con-
tains only those papers which bear directly on the contents of this general re-
view and omits many papers which have played a key role in the development
of the subject of group representations.

2. The basic problem. A unitary representation of a locally compact group
G is a continuous homomorphism of G into the group of unitary operators on &
Hilbert space, topologized in the strong operator topology. One deals with in-
finite dimensional representations because in general a locally compact group
need not have any non-trivial finite dimensional bounded representations, and
one deals with unitary representations because they are easier to handle and
there ‘are sufficiently many irreducible ones [31, 85).

Two unitary representations U of G on Hilbert spaces H;,i = 1,2 are equiva-
lent (U; = Us) if there exists an isometry T of H, onto H. such that TUi(g) =
Ux(g)T, g in G. We consider the following structure on the set of equivalence
classes of unitary representations of G which we denote by R(G).

(1) The direct sum Uy @ U. of two representations U;on H;is the representa-
tion of G on Hy @ H, given by Uy @ Ua(g) (71,2 Y = { Ug)z, Uslg)ze ),
where { z;, 2 )isin H; @ H,, and gis in G. This addition is well-defined on
R(®) and is commutative and associative.

A generalization of direct sum, essential for the case where G is not abelian
or compact, is that of the continuous direct sum often called the direct integral.
Let (Y, S, u) be a measure space with S the class of measurable sets on ¥ and u
the measure, and let {H,}, y in ¥ be a collection of Hilbert spaces. A direct
integral of {H,}, y in ¥ is & subspace H of functions f of ¥ into U,.rH, having
the properties (i) if f is in H then f(y) is in H, ; (ii) there exists a countable
family f, e H such that for almost all y e ¥, {f.(y)} spans H, ; and H is maximal
with respect to (iii) if f and g are in #, then (f(%), 9(¥))y is a measurable function
on (Y, S, u) and lies in Ly(Y, S, ). Here (-,-), denotes the inner product in

11



12 GROUP REPRESENTATIONS
H, . H is a Hilbert space with inner product given by
00 = [ U e,
If to each point y in ¥ we make correspond a bounded operator T on H, in such

a manner that (“Tf(y), g(y)), is measurable and ess sup [| YT ||, < %, then
the collection {*T'} defines a bounded operator 7' on H , where (Tf)(y) = *T(f(y)).

T will be denoted by f “T dp. Suppose now that {*U} is a set of unitary repre-
sentations of G on H,, y in ¥ for which f YU(g) dp is defined for each g in G.

Then U = f *U du is the unitary representation of G on f H, du given by

U@NW = [ VW) du.

For a detailed discussion of many technical questions here omitted in the defini-
tion of continuous direct sum, see [37, 66, 87, 101].

(2) If U is a representation of G on H, the adjoint representation of U is a
representation U on A, the dual space of H given by U(g)p = U (g™")*0, ¢ in A,

- * denoting the usual adjoint mapping from operators on H to operators on H.

It is easy to check that if U, = U, , then U, =~ U/, and
,f”Udp = f"l'jdu.

(3) Let Hy ® H, be the set of all linear transformations 7' from H, to H,
such that eyT*m7T is a Hilbert-Schmidt operator of H, into H; where a; is the
conjugate linear map of H; onto H; . The trace on such operators makes H; ® H,
into a Hilbert space, the Kronecker product of H; and H;. The Kronecker
product of representations U, and U, is a representation U; ® U, of G on H. 1 ® H,
given by (U, ® U,)(¢)T = Ur(9)TUx(g), 9in @, T in H, ® H,. On R(@), the
Kronecker product is commutative and associative. Also, U, @ Uy 2 U, ® U,
and

U®f”Udu§fU®”Udp.

The set of self-adjoint operatorsin H ® His a subspace H ® H left invariant
by U ® U, as is its orthogonal complement H H, the set of skew adjoint
operators. The restriction of U ® U to H ® H we denote by U ® U and call
the symmetric Kronecker square. The anti symmetric Kronecker square U @ U
is the restriction of U ® Uto H @ H. Clearly U ® U = UelU)e (Ual).
What has just been defined for the symmetric group on two letters S; acting
on H @ H can be done more generally for S, acting on # @ --- ® H, the
product taken n times, by permuting the factors. This will give a decomposi-
tion of U ® --+- ® U into a direct sum, each summand corresponding to a
partition of n.



