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GENERAL INTRODUCTION
by Professor G. Gabrielli

In October 1972, on the occasion of the 20th Anniversary of 'AGARD,
a solemn ceremony in memory of its founder, Theodore von Kirman, was
held in Brussels. At the end of the commemorative speech I had the honor to
deliver, I made a suggestion which has been in'my mind for a long time and
which, in my opinion; was the most valid and worthy manner in which to
commemorate such a man and scientist as Theodore von Karman. »

He was the author of a collection of four volumes entitled ‘“The Col-
lected Works of Theodore von Kirman”, issued by Butterworth Scientific
Publications in 1956, covering the period 1902 to 1951. Often, when I
consulted this collection, I though that it'would be necessary to supplement
it with another volume. And who, better than AGARD, could undertake its
publication? . '

. That is why, in Brussels, I terminated my commemorative speech with
such a proposal, which met with the unanimous agreement of the National
Delegates Board and the audience as well.

Soon after these celebrations, a Committee was established to select
Theodore von Kdrman'’s writings and to implement this initiative. After two
years of exhaustive work and Committee meetings, its work was completed.
This publication includes his writings over the period 1952 to 1963 — when
von Kdrman died. — and covers a wide range of his intensive activity.

Theodore von Karman liked to consider himself an engineer and, in this
capacity, he considered the application of mathematics to engineering a
means of properly interpreting physical phenomena. He also maintained that
the development of mathematical analysis could not be separated from the
development of physics, and particularly of mechanics. But he was also, and
above all, an outstanding mathematician, with a particular gift for applied
mathematics. This mental aptitude, together with his genius for perception,
make his writings still up to date, not only in the depth and originality of the
contents but also in the methodology which they represent. ‘

In fact, the originality and depth of von Kirman’s studies and research
give not only an irreplaceable source of teaching and all-important scientific
discoveries, but also an image of the man with all his ability of understanding
and feeling for that which surrounds us. All this activity was based on a deep
human warmth which he transmitted to those who had the good fortune to
meet him. More than 10 years after his death, this work is aimed at being a
meeting point to evoke the figure-of a master of science and life, and to
make available to scholars, pupils and friends of von Kirméan a complete
picture of the amazing scientific activity of this great man and an image of
his unique personality.



.1 thank my fellow Committee Members for their dedicated and in-
valuable cooperation and, in particular, Professor W.R. Sears and Dr F.L.
" Wattendorf who accepted my invitation to write Prefaces for Parts I and 11
of 'the book. The other Committee Members (former students and friends of
Dr von Kdrmin) were Dr F. Malina, Professor F. Marble, Professor L.
Crocco and Mr R.A. Willaume and I thank them for their suggestions and
advice. I would also express my thanks to AGARD and the von Karmdn
Institute for their support in bringing this project to fruition, and in parti-
cular to Mr O. Blichner, Director of AGARD, Mr R.A. Willaume, Director,
Plans- and Programmes of AGARD, Professor J. Smolderen, Director of the
von Kdrman Institute, Professor J. Wendt of the von Kdrmadn Institute and
Mr J. Trotman, Scientific Publications Executive of AGARD, for their
assistance. The actual printing of this book has only been possible owing
to the understanding and cooperation of Mr H. Stanton, a Director of
Technical Editing and Reproduction Ltd. The extensive bibliography was
produced with the help of the Members of the Technical Information Panel
of AGARD, whose help I have greatly appreciated.
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PREFACE
by Professor W.R.Sears

In his Preface to the Collected Works of Theodore von Kérman, 1902—1951,
Dr Hugh L.Dryden expressed the hope that Professor von Karman, having
reached the age of seventy, would continue to contribute to science and
technology and have many more fruitful years. This hope was' realized;
Theodore von Karman lived almost to the age of eighty-two and continued
to study, to write, to lecture, and to advise. The depth of his scientific insight
and the breadth of his far-ranging technical interests are attested to by the
present collection.

In this, the first half of the collection, the editors have gathered
together what they believe are his most significant scientific and technical
publications of this period. To make this selection, they have tried to
distinguish between contributions obviously of lasting scientific value, which
are collected in this part of the volume, and others whose purposes were more
transient or whose lasting significance is more historical than scientific. Many
of the latter are reproduced in the second part of this volume.

The scientific papers, like those of the preceding four volumes, represent
a remarkably wide range of subjects. Clearly, many were inspired by
practical engineering developments of the times. Typically, Professor
von Karman’s studies in these years involve interdisciplinary areas; he was
always intrigued and delighted by such combined fields as magnetofluid-
mechanics and, especially, aerothermochemistry. At least five of the papers
collected here are related to this subject, which concerns combustion, flame
propagation, and heat release in flowing gases.

In his well-recognized role of Senior Scientist of the engineering world,
Professor von Karman, in his last years, contributed to meetings and publica-
tions in many countries and in several languages. His papers, therefore, have
sometimes appeared in relatively obscure journals and proceedings. One of
the virtues of this collection is that it will bring these writings to the attention
of a wide audience. In the hope of performing another service, the editors
have also prepared, with due humility, brief editorial comments as introduc-
tions to certain papers of this collection. These are intended to help the
readers — in particular, younger readers — to relate these papers to the larger
body of technical and scientific literature.



This paper is an abridged version of Professor von Karman’s
contribution to the volume *“General Theory of High-Speed Aero-
dynamics” (W.R.Sears, ed.), which constituted Volume VI of the series
High-Speed Aerodynamics and Jet Propulsion published by Princeton
University Press in 1954. This section (VI, A) is the opening section of
the volume and serves as a general introduction and survey of the field
of aerodynamic theory.

Proceedings of the First National Congress of Applied Mechanics, A.S.M.E., New York,
1952, pp.673—685.

ON THE FOUNDATIONS OF HIGH SPEED AERODYNAMICS*

1. INCOMPRESSIBLE FLOW

,Looking back on fifty years of aerodynamics research during the first half of
this century, it appears most remarkable that the crude approximation which
considers the air as an incompressible nonviscous fluid proved itself so
valuable in solving many problems of practical aircraft design.

In certain. cases, for example in the performance calculations, of
airplanes and propellers, useful results could be obtained even by a further
simplification, that is, by approximating the actual flow by infinitely small
perturbations of a uniform and parallel airflow. Of course, it was recognized
at the time that certain phenomena, especially those connected with drag
and stall, require the consideration of viscosity. However, even then Prandtl’s
classical idea to restrict the influence of viscosity to the neighborhood of
solid walls, i.e., the concept of the boundary layer, proved to be sufficiently
exact for the description and, in some cases, for the prediction of the
phenomena.

This state of affairs was fundamentally changed by the advent of
high-specd aircraft. At first, it seemed that compressibility troubles could be
met by compressibility corrections. However, very soon it became clear that
the engineer needed a full grasp and knowledge of fluid mechanics over the
cntire speed range, extending from incompressible flow to flows with
velocities large in ‘comparison to the velocity of sound, and over a density
range extending almost to a complete vacuum.

The concept of an incompressible fluid evidently ignores the fact that
pressurc variations are propagated in a fluid with a finite velocity. The
assumption of the instantaneous propagation of pressure introduces essential
mathematical simplifications which make possible the application of
Laplace’s cquation and the methods of conformal transformation, i.e., the
simplest and most popular means of mathematical physics. It also justifies

* Presented at the First U.S. National Congress of Applied Mechanics, Ann Arbor,
Michigan, June 1951.



ON THE FOUNDATIONS OF HIGH SPEED AERODYNAMICS

‘the concept of apparent mass in the study of nonsteady phenomena. It is
one of the fundamental -theorems of the mechanics of incompressible
nonviscous fluid that an arbitrary continuous sequence of vortex-free flow
patterns always represents a dynamically correct transient flow. It is evident
that this means an enormous reduction of difficulties in dealing with
nonsteady phenomena. :

2. PROPAGATION OF PRESSURE

I believe the first calculation of the propagation of a pressure wave through
air was made by Newton. Since he could not know the difference between
isothermal and isentropic compression, his formula for the velocity of sound
has a wrong numerical factor. He says, however, quite clearly in Theorem
XXXVIII of his second book: “The velocities of pulses propagated in an
elastic fluid are in a ratio compounded of the square root of the ratio of the
elastic force directly, and the square root of the ratio of the density
inversely; supposing the elastic force of the fluid to be proportional to its
condensation.” '

He gives in the same book the following description of the mechanism
of the resistance of a solid body moving in an elastic fluid: “Projectiles
excite a motion in fluids as they pass through them, and this motion arises
from the excess of the pressure of the fluid at the fore parts of the projectile
above the pressure of the same at the hinder parts; and cannot be less in
.mediums infinitely fluid" than it is in air, water, and quicksilver, in
proportion to the density of matter in each. Now this excess of pressure
" does, in proportion to its quantity, not only excite a motion in the fluid, but
also acts upon the projectile so as to retard its motion; and therefore the
resistance in every fluid is as the motion excited by the projectile in the
fluid; and cannot be less in the most subtle ether in proportion to the
density of that ether, than it is in air, water, and quicksilver, in proportion to
the densities of those fluids.” We will see later that this concept of the drag
was correct for the case of the supersonic motion of projectiles, whereas in
the subsonic case — at least for rounded bodies — his description is at
variance with d’Alembert’s theorem.

3. SUPERSONIC VS. SUBSONIC FLOW

From Newton’s concept of the propagation of motion in an elastic fluid, one
arrives directly at the well-known picture of subsonic and supersonic flow.
For the following considerations we restrict ourselves to flows produced by
small disturbances, and neglect viscosity, i.e., absorption of energy in the air.

Since a slight pressure change is propagated at sound velocity, it is
.evident that the effect of pressure changes produced in the air by a body
moving faster than sound cannot reach points ahead of the body. It may be
said that the body is unable to send signals ahead. It is seen that there is a
fundamental difference between subsonic and supersonic motion.

Consider the case of subsonic stationary motion, for example, the
uniform level . flight of an airplane. Then a pressure signal travels ahead at

6



- THEODORE VON KARMAN

sound velocity minus flight velocity relative to the airplane, whereas a signal
travels backward at a speed equal to the sum of the flight and sound
velocity. So the distribution of the pressure effects is no longer symmetric;
nevertheless, every point in space is reached by a signal, provided the flight
started from an infinitely remote point. As can easily be seen, this is not the
case in supersonic flight. : : '

Consider the simplest case of a point source (Fig.1). Figure 1(a) shows
the spherical surface that the pressure effect reaches in equal time intervals
in the case of a point source at rest. Figure 1(b) showsthe same surfaces
relative to the point source moving with a speed less than that of the sound.
Figure 1(c) represents the case of a point source moving with sonic velocity,
and Figure 1(d) the case of a source moving faster than sound. It is seen that
in the last case all action is restricted to the interior of a cone that includes
all the spheres emitted by the source before the instant considered. The
outside of this cone can be called the zone of silence. It is easily seen that
the trigonometrical sine of the half vortex angle of the cone is equal to the
reciprocal of the Mach number (ratio of source speed to sound speed). This
angle is called the Mach angle. The cone that separates the zone of action
from the zone of silence is called the Mach cone.

Mach cone

Zone of
silence
(forbidden
signals)

Zone of action

Figure 1

The points plotted in Figures 1(a)—(d) show the location of mass points
that are supposed to be emitted from the source, and to move at sound
velocity in all directions. They illustrate qualitatively the distribution of the
density of action in the various cases. In the subsonic case one finds that the
pressure effect not only decreases with increasing distance from the source,
but is also dispersed in all directions. In the case of a body moving at
supersonic velocity, the bulk of the effect is concentrated in the ncighbor-
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hood of the Mach cene that forms the outer limit of the zone of action.

4. LINEARIZED THEORY OF SUPERSONIC FLOW

The so-called linearized thecory of supersonic {low builds up the flow
produced by the motion of a body by superposition of small disturbances
such as considered in the last paragraph. Onec can develop in this way
relatively simple methods for the computation of velocity and pressure
distributions in the field and also for the computation of the forces, lift and
drag, acting on moving bodies. In the last decade very extended analytical
work has been done using the lincarized theory of supersonic flow. This grew
out from such modest beginnings as the computation of the drag of slender
bodies, published by N.Moore and the writer in 1932, the article on
“Problem of resistance in compressible fluids”, presented by the writer at
the Volta Congress for high speed in 1935 in Rome, Ackeret’s work on the
lift of a two-dimensional thin airfoil published in 1928, and Busemann’s
work of 1935. In the casc of vortex-free {low, the equations ol motion can
be reduced to equations analogous to the wave cquation. The coordinate
parallel to the direction of the main flow, or to the motion of the missilc,
wing or body, plays the role of the time coordinate. Hence, the
well-established methods of [inding solutions of the wave equation can be
" used in a greater number of problems of practical importance, similarly to
the capabilities of the methods for the solution of Laplace’s equation in the
case ol incompressible flow.

The concept of the lincarized supersonic flow theory also- reveals the
existence of a novel kind ol drag which we do not encounter in subsonic
motion, and which we designate as “wave drag”.

As before, we negleet viscosity and assume that the motion of the body
produces disturbances that can be considered small. At a certain distance
from the moving body this second assumption will, in general, be satislied.
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THEODORE VON KARMAN

Now consider the body and the surrounding air inside of a cylindrical
control surface as one mechanical system. Then one finds that, because oi
the concentrated action that characterizes the propagation of pressure [rom
4 source moving at supersonic velocity, the total {lux of momentum of the
air masses entering and lcaving the cylindrical boundary remains finite even
when the boundary is removed to an arbitrarily large distance.

Figure 2 refers to the case of a two-dimensional symmetric airfoil, with
sharp leading edge, moving through the air initially at rest. Let us consider
the flow through a planc parallel te the plane of symmetry at a certain
distance from the body. The diagram [irst shows the distribution of induced
velocities (1) and the horizontal component of momentum transier (2) along
this plane for three cases. It is evident that the reaction of outgoing flow
having a horizontal component opposite to the {light direction and incoming
flow with a horizontal component in the flight direction is equivalent to a
propulsive thrust acting on the body. Conversely, outgoing flow with a
component in the flight direction and incoming flow directed opposite to
the flight direction givc rise to a drag. In the two subsonic cascs
(M=0 and M =0.707), thrust and drag contributions are balanced, and
the total horizontai momentum transfer is cqual to zero. This is in
accordance with d’Alembert’s theorem. :

The influence of increasing Mach number is essentially to increase the
magnitude of the induced velocities, and to increase the concentration of the
disturbance in the region extending laterally outward from the body. The
increase in the concentration of action is also illustrated by the pressure
distribution (3) on the control surface. In the supersonic case (M = 1.414),
the disturbance is restricted to two strips bounded by two Mach lines. These”
lines are the intersections of planes that are envelopes of the'Mach cones
starting from points of the leading and trailing edges of the airfoil. The
horizontal component of the outward {low is in the flight direction; that of
the inward flow is opposite to the flight direction. Hence, both represent
drag on the body. This type of drag is called “wave drag™.

The lincarized theory, however, has serious limitations. First, it gives
only a first approximation, since all deviations from the uniform parallel
flow are considercd infnitely small and therefore additive. This is justified
only for very thin or slender bodies. If the disturbance caused by the
presence of the bodv cannot be considered small, the linearized theory does
not apply, or at least needs importance corrections. One of the necessary
corrections is to take into account the existence of discontinuities
{shockwaves) in supersonic flow.

Second, there arc speed ranges in which the linearization of the
cquation of motion cven for small disturbances 15 not justified. The
conditions for the validity of the linearized theory are twolold:

(a) The perturbation velocities must be small in comparison with both
the mean stream velocity and the velocity of sound.

(b) The perturbation velocities must be small in comparison with the
difference of the mean stream velocity and the sound velocity.

Condition (a) excludes the case of very high velocities; evidently if the
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mean, stream velocity is several times larger than the sound velocity,
* disturbances which are small relative to the mean stream velocity may be of
the same order of magmtude as the sound veloc1ty This speed range is called
the “hypersonic range”.
On the other hand, condition (b) excludes the range near M =1 from
the veloc1ty of the linearized theory. We call this range the “transonic
range”.

5. FINITE DISTURBANCES IN COMPRESSIBLE FLOW
“SHOCKWAVES

The solution of the equations of motion in the case of finite disturbances of
a uniform parallel stream of an ideal compressible fluid is, in general, a
cumbersome mathematical problem, which has been treated by a great
. number of authors with relatively-little success. In the case of a supersonic
stream, at least in the domains where the flow remains supersonic, the
method of characteristics can be applied with good results. Also the transfer
of the computation from the physical plane to the so-called hodograph
plane, i.e., the replacement of space coordinates by velocity coordinates as
independent variables, is helpful in many problems, since the equations in
the hodograph plane become linear by means of the Legendre transforma-
_tion. In addition to computation difficulties a new phenomenoén has to be
taken into account: from the mathematical point of view — the possibility of
discontinuous solutions; from the physical point of view — the ex1stence of
shockwaves.

In subsonic flow the only possible discontinuous change of the velocxty .
is tangential to a surface consisting of streamlines. Such a discontinuity does
not violate any mechanical law because of the nonexistence of shear stresses
in the fluid. In the supersonic flow, however, a discontinuous change of
velocity is also possible along streamlines. Such discontinuous change is
called a shock. In fact, the laws of mechanics are satisfied provided the fluid
element conserves its mass, momentum and energy. The physical reason why
a discontinuous chahge is only possible in supersonic flow can be easily seen.
The theorem of cc nservation of mass calls for the equality of the so-called
Fano number (product of density and normal velocity) on both sides of the
surface. The questiun arises whether this product can have the same value for
different individual values of velocity and density while at the same time the
momentum and energy of the fluid element remain unchanged. Now, if we
consider the expansion or compression process of a gas, we find that the
Fano number has-< maximum when the velocity of the gas is equal to the
velocity of sound. Consequently, in the case of a shock, the velocity normal
to the discontinuity surface has to be subsonic on one side and supersonic on
the other side. Therefore no discontinuous change can occur in a purely
subsonic flow. The rule, however, does not exclude a discontinuous change
in a purely supersonic flow, since it refers to the components of the velocity"
normal to the discontinuity surface. Thus an “oblique shock” is possible also
in a purely supersomc flow.

One gains a certain insight into the physmal relationships by the
consideration of the following problem: .

10



