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Preface

In the last few decades, advances in molecular biology and in the research in-
frastructure in this field has given rise to the “omics” revolution in molecular
biology, along with the explosion of databases: from genomics to transcriptomics,
proteomics, interactomics, and metabolomics. However, the huge amount of bio-
logical information available has left a bottleneck in data processing: information
overflow has called for innovative techniques for their visualization, modelling,
interpretation and analysis. The many results from the fields of computer science
and engineering have then met with biology, leading to new, emerging disciplines
such as bioinformatics and systems biology. So, for instance, as the result of ap-
plication of techniques such as machine learning, self-organizing maps, statistical
algorithms, clustering algorithms and multi-agent systems to modern biology, we
can actually model and simulate some functions of the cell (e.g., protein interac-
tion, gene expression and gene regulation), make inferences from the molecular
biology database, make connections among biological data, and derive useful
predictions.

Today, and more generally, two different scenarios characterize the post-
genomic era. On the one hand, the huge amount of datasets made available
by biological research all over the world mandates for suitable techniques, tools
and methods meant at modelling biological processes and analyzing biological
sequences. On the other hand, biological systems work as the sources of a wide
range of new computational models and paradigms, which are now ready to be
applied in the context of computer-based systems.

Since 2001, NETTAB (the International Workshop on Network Tools and Ap-
plications in Biology) is the annual event aimed at introducing and discussing
the most innovative and promising network tools and applications in biology and
bioinformatics. In September 2004, the 4th NETTAB event (NETTAB 2004) was
held in the campus of the University of Camerino, in Camerino, Italy. NETTAB
2004 was dedicated to “Models and Metaphors from Biology to Bioinformat-
ics Tools”. It brought together a number of innovative contributions from both
bioscientists and computer scientists, illustrating their original proposals for ad-
dressing many of the open issues in the field of computational biology. Along with
an enlightening invited lecture by Luca Cardelli (from Microsoft Research), the
presentations and the many lively discussions made the workshop a very stimu-
lating and scientifically profound meeting, which provided the many participants
with innovative results and achievements, and also with insights and visions on
the future of bioinformatics and computational biology.

This special issue is the result of the workshop. It includes the reviewed and
revised versions of a selection of the papers originally presented at the workshop,
and also includes a contribution from Luca Cardelli, presenting and elaborating
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on his invited lecture. In particular, the papers published in this volume cover
issues such as:

data visualization

— protein/RNA structure prediction

motif finding

modelling and simulation of protein interaction
— genetic linkage analysis

notations and models for systems biology

Thanks to the excellent work of the many researchers who contributed to this
volume, and also to the patient and competent cooperation of the reviewers, we
are confident that this special issue of the LNCS Transactions on Computational
Systems Biology will transmit to the reader at least part of the sense of achieve-
ment, the dazzling perspectives, and even the enthusiasm that we all felt during
NETTAB 2004. A special thanks is then due to the members of the Program
Committee of NETTAB 2004, who allowed us, as the Workshop Organizers, to
prepare such an exciting scientific program: Russ Altman, Jeffrey Bradshaw,
Luca Cardelli, Pierpaolo Degano, Marco Dorigo, David Gilbert, Carole Goble,
Anna Ingolfsdottir, Michael Luck, Andrew Martin, Peter McBurney, Corrado
Priami, Aviv Regev, Giorgio Valle, and Franco Zambonelli.

Finally, the Guest Editors are very grateful to the Editor-in-Chief, Corrado
Priami, for giving them the chance to work on this special issue, and also to the
people at Springer, for their patient and careful assistance during all the phases
of the editing process.

June 2005 Emanuela Merelli
Pablo Gonzalez
Andrea Omicini
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Computer-Aided DNA Base Calling
from Forward and Reverse Electropherograms

Valerio Freschi and Alessandro Bogliolo

STI - University of Urbino, Urbino, IT-61029, Italy
{freschi, bogliolo}@sti.uniurb.it

Abstract. In order to improve the accuracy of DNA sequencing, forward and
reverse experiments are usually performed on the same sample. Base calling is
then performed to decode the chromatographic traces (electropherograms) pro-
duced by each experiment and the resulting sequences are aligned and compared
to obtain a unique consensus sequence representative of the original sample. In
case of mismatch, manual editing need to be performed by an experienced biolo-
gist looking back at the original traces. In this work we propose computer-aided
approaches to base calling from forward and reverse electropherograms aimed at
minimizing the need for human intervention during consensus generation. Com-
parative experimental results are provided to evaluate the effectiveness of the
proposed approaches.

1 Introduction

DNA sequencing is an error-prone process composed of two main steps: generation of
an electropherogram (or trace) representative of a DNA sample, and interpretation of
the electropherogram in terms of base sequence. The first step entails chemical pro-
cessing of the DNA sample, electrophoresis and data acquisition [9]; the second step,
known as base calling, entails digital signal processing and decoding usually performed
by software running on a PC [4,5,6,10]. In order to improve the accuracy and relia-
bility of DNA sequencing, multiple experiments may be independently performed on
the same DNA sample. In most cases, forward and reverse experiments are performed
by sequencing a DNA segment from the two ends. Bases that appear at the beginning
of the forward electropherogram appear (complemented) at the end of the reverse one.
Since most of the noise sources are position-dependent (e.g., there is a sizable degra-
dation of the signal-to-noise ratio during each experiment) starting from opposite sides
provides valuable information for error compensation. The traditional approach to base
calling from opposite traces consists of: i) performing independent base calling on each
electropherogram, ii) aligning the corresponding base sequences, and iii) obtaining a
consensus sequence by means of comparison and manual editing. The main issue in
this process is error propagation: after base calling, wrong bases take part in sequence
alignment as if they were correct, although annotated by a confidence level. In case
of mismatch, the consensus is manually generated either by comparing the confidence
levels of the mismatching bases or by looking back at the original traces.

In this work we explore the feasibility of computer-aided consensus generation. We
propose two different approaches. The first approach (called consensus generation af-
ter base calling, CGaBC) resembles the traditional consensus generation, except for

C. Priami et al. (Eds.): Trans. on Comput. Syst. Biol. III, LNBI 3737, pp. 1-13, 2005.
© Springer-Verlag Berlin Heidelberg 2005



2 V. Freschi and A. Bogliolo

the fact that automated decisions are taken, in case of mismatch, on the basis of the
quality scores assigned by the base caller to forward and reverse sequences. The second
approach (called base calling after trace merging, BCaTM) performs base calling after
error compensation: electropherograms obtained from forward and reverse sequenc-
ing experiments are merged in a single averaged electropherogram less sensitive to se-
quencing errors and noise. Base calling is then performed on the averaged trace directly
providing a consensus sequence. The tool flows of the two approaches are shown in
Figure 1. Two variants of the second approach are presented differing only for the way
the original electropherograms are aligned for merging purposes.

Rev Trace’ Rev Trace’

Fwd Trace Fwd Trace Rev Trace|

Trace alignment

I

Re-sampling

L1

Averaging

]

Smoothing

Fwd Seq

Aligned Sequences

Merged Trace l

Editing

Consensus Sequence Base Sequence
@ (b)

Fig. 1. Tool flow of computer aided base calling from forward and reverse electropherograms: (a)
CGaBC. (b) BCaTM. (Rev Trace’ denotes the original reverse trace to be reversed and comple-
mented into Rev Trace)

The results presented in this paper show that reliable automated decisions can be
taken in most cases of mismatch, significantly reducing the human effort required to
generate a consensus sequence. The key issue, however, is how to distinguish between
reliable and unreliable automated decisions. A quality score is assigned to this purpose
to each base of the consensus sequence. If the quality is above a given threshold, au-
tomated decisions can be directly accepted, otherwise they need to be double checked
by a human operator. The significance of the quality threshold is discussed in the result
section.

1.1 Base Calling

Base calling is the process of determining the base sequence from the electropherogram
provided by a DNA automated sequencer. In particular we refer to the DNA sequencing
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process known as Sanger’s method [9]. Four reactions of extension from initial primers
of a given template generate an entire set of nested sub-fragments in which the last
base of every fragment is marked with 4 different types of fluorescent markers (one
for each type of base). Fragments are then sorted by length by means of capillary elec-
trophoresis and detected by 4 optical sensors working at disjoint wavelengths in order
to distinguish the emissions of the 4 markers. The result of a sequencing experiment is
an electropherogram that is a 4-component time series made of the samples of the emis-
sions measured by the 4 optical sensors. In principle, the DNA sequence can be obtained
from the electropherogram by associating each dominant peak with the corresponding
base type and by preserving the order of the peaks. However, electropherograms are
affected by several non-idealities (random noise of the measuring equipment, cross-talk
due to the spectral overlapping between fluorescent markers, sequence-dependent mo-
bility, ...) that require a pre-processing step before decoding. Since the non-idealities
depend on the sequencing strategy and on the sequencer, pre-processing (consisting of
multi-component analysis, mobility shift compensation and noise filtering) is usually
performed by software tools distributed with sequencing machines [1]. The original
electropherogram is usually called raw data, while we call filtered data the result of
pre-processing. In the following we will always refer to filtered data, representing the
filtered electropherogram (hereafter simply called electropherogram, or trace, for the
sake of simplicity) as a sequence of 4-tuples. The k-th 4-tuple (Ak, Ck, Gk, Tk) rep-
resents the emission of the 4 markers at the k-th sampling instant, uniquely associated
with a position in the DNA sample. In this paper we address the problem of base calling
implicitly referring to the actual decoding step, that takes in input the (filtered) electro-
pherogram and provides a base sequence. Base calling is still a difficult and error-prone
task, for which several algorithms have been proposed [4,6,10]. The result they pro-
vide can be affected by different types of errors and uncertainties: mismatches (wrong
base types at given positions), insertions (bases artificially inserted by the base caller),
deletions (missed bases), unknowns (unrecognized bases, denoted by N). The accuracy
of a base caller can be measured both in terms of number of N in the sequence, and
in terms of number of errors (mismatches, deletions and insertions) with respect to
the actual consensus sequence. The accuracy obtained by different base callers starting
from the same electropherograms provides a fair comparison between the algorithms.
On the other hand, base callers usually provide estimates of the quality of the electro-
pherograms they start from [3]. A quality value is associated with each called base,
representing the correctness probability: the higher the quality the lower the error prob-
ability. Since our approach generates a synthetic electropherogram to be processed by
a base caller, in the result section we also compare quality distributions to show the
effectiveness of the proposed technique.

1.2 Sequence Alignment

Sequence comparison and alignment are critical tasks in many genomic and proteomic
applications. The best alignment between two sequences F and R is the alignment that
minimizes the effort required to transform F in R (or vice versa). In general, each edit
operation (base substitution, base deletion, base insertion) is assigned with a cost, while
each matching is assigned with a reward. Scores (costs and rewards) are empirically as-
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signed depending on the application. The score of a given alignment between F and R
is computed as the difference between the sum of the rewards associated with the pair-
wise matches involved in the alignment, and the sum of the edit operations required to
map F onto R. The best alignment has the maximum similarity score, that is usually
taken as similarity metric. The basic dynamic programming algorithm for computing
the similarity between a sequence F of M characters and a sequence R of NV characters
was proposed by Needleman and Wunsch in 1970 [8], and will be hereafter denoted by
NW-algorithm. It makes use of a score matrix D of M + 1 rows and N + 1 columns,
numbered starting from 0. The value stored in position (2, 7) is the similarity score be-
tween the first : characters of F and the first j characters of R, that can be incrementally
obtained from D(i — 1, 7), D(¢ — 1,5 — 1) and D(i,j — 1):

D(i— 1,7 — 1) + Ssub(F (i), R(j))
D(i,7) =max{ D(i—1,7) + Sqel 1)
D(l,] — 1)+ Sins

Sins and Sge; are the scores assigned with each insertion and deletion, while Sy
represents either the cost of a mismatch or the reward associated with a match, de-
pending on the symbols associated with the row and column of the current element. In
symbols, Ssup(F (1), R(J)) = Smismatch if F(2) # R(j), Ssub(F(2), R(7)) = Smatch
if F(i) = R(j).

2 Consensus Generation after Base Calling (CGaBC)

When forward and reverse electropherograms are available, the traditional approach to
determine the unknown DNA sequence consists of: i) independently performing base
calling on the two traces in order to obtain forward and reverse sequences, ii) aligning
the two sequences and iii) performing a minimum number of (manual) editing steps
to obtain a consensus sequence. The flow is schematically shown in Figure 1.a, where
the reverse trace is assumed to be reversed and complemented by the processing block
labeled Reverse. Notice that complementation can be performed either at the trace level
or at the sequence level (i.e., after base calling). In Fig. 1.a the reverse trace is reversed
and complemented after base calling.

The results of the two experiments are combined only once they have been indepen-
dently decoded, without taking advantage of the availability of two chromatographic
traces to reduce decoding uncertainties. Once base-calling errors have been made on
each sequence, wrong bases are hardly distinguishable from correct ones and they take
part in alignment and consensus. On the other hand, most base callers assign with each
base a quality (i.e., confidence) value (representing the correctness probability) com-
puted on the basis of the readability of the trace it comes from.

In a single sequencing experiment, base qualities are traditionally used to point out
unreliable calls to be manually checked. When generating a consensus from forward
and reverse sequences, quality values are compared and combined. Comparison is used
to decide, in case of mismatch, for the base with higher value. Combination is used to
assign quality values to the bases of the consensus sequence.
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The proper usage of base qualities has a great impact on the accuracy (measured
in terms of errors) and completeness (measured in terms of undecidable bases) of the
consensus sequence. However, there are no standard methodologies for comparing and
combining quality values.

The CGaBC approach presented in this paper produces an aggressive consensus by
taking always automated decisions based on base qualities: in case of a mismatch, the
base with higher quality is always assigned to the consensus. Since alignment may give
rise to gaps, quality values need also to be assigned to gaps. This is done by averaging
the qualities of the preceding and following calls.

Qualities are assigned to the bases of the consensus sequence by adding or subtract-
ing the qualities of the aligned bases in case of match or mismatch, respectively [7].
Quality composition, although artificial, is consistent with the probabilistic nature of
quality values, defined as ¢ = —10log10(p), where p is the estimated error probability
for the base call [5].

In some cases, however, wrong bases may have quality values greater than correct
ones, making it hard to take automated correct decisions. The overlapping of the quality
distributions of wrong and correct bases is the main problem of this approach.

A quality threshold can be applied to the consensus sequence to point out bases with
a low confidence level. Such bases need to be validated by an experienced operator,
possibly looking back at the original traces.
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Fig. 2. Trace alignment issues (left) and sample re-positioning on a common x-axis (right)
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3 Base Calling after Trace Merging (BCaTM)

The approach is illustrated in Figure 1b. We first obtain an average trace by combin-
ing the two experiments available for the given DNA, then we perform base calling
on the averaged trace directly obtaining the consensus sequence. The rationale behind
this approach is two-fold. First, electropherograms are much more informative than the
corresponding base sequences, so that their comparison provides more opportunities
for noise filtering and error correction. Second, each electropherogram is the result of
a complex measurement experiment affected by random errors. Since the average of
independent measurements has a lower standard error, the averaged electropherogram
has improved quality with respect to the original ones.

Averaging independent electropherograms is not a trivial task, since they usually
have different starting points, different number of samples, different base spacing and
different distortions, as shown in the left-most graphs of Fig. 2. In order to compute the
point-wise average of the traces, we need first to re-align the traces so that samples be-
longing to the same peak (i.e., representing the same base) are in the same position, as
shown in the right-most graphs of Fig. 2. By doing this, we are then able to process ho-
mologous samples, that is to say samples arranged according to the fact that in the same
position on the x-axis we expect to find values representing the same point of the DNA
sample. A similar approach was used by Bonfield et al. [2] to address a different prob-
lem: comparing two electropherograms to find point mutations. However, the authors
didn’t discuss the issues involved in trace alignment and point-wise manipulation.

We propose two different procedures for performing trace alignment. The first is
based on the maximization of the correlation between the four time series, using a dy-
namic programming algorithm derived form the NW-algorithm. The second makes use
of a preliminary base calling step to identify base positions within the trace to be used
to drive trace alignment. The overall procedures (respectively denoted as sample-driven
alignment and base-driven alignment) are described in the next sections, assuming that
forward and reverse traces are available and that the reverse trace has already been
reversed and complemented. All procedures are outlined in Fig. 3.

After alignment, forward and reverse traces are re-sampled using a common sam-
pling step and their sample-wise average is computed to obtain the averaged electro-
pherogram. Local smoothing is then performed to remove small artificial peaks possibly
introduced by the above steps. Base calling is finally performed on the averaged elec-
tropherogram directly providing the consensus sequence. The entire process is outlined
in Fig. 1.b.

3.1 Sample-Driven (SD) Trace Alignment

Sample-driven trace alignment aims at maximizing the correlation between the 4-com-
ponent time series that constitute forward and reverse electropherograms. Aligned elec-
tropherograms are nothing but the original electropherograms with labels associated
with samples to denote pairwise alignment. Homologous samples share the same la-
bel. The score associated with an alignment is the sample-wise correlation computed
according to the alignment.
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Score
matrix

fitting
parameters

(a)

Fig. 3. a) Sample-driven alignment procedure. b) Base-driven alignment procedure.

The difference between pairwise correlation of electropherograms and pairwise cor-
relation of standard time series is twofold. First, electropherograms are 4-component
time series. The correlation between two electropherograms is the sum of the pairwise
correlations between their homologous components. Second, due to the intrinsic nature
of electrophoretic runs, electropherograms might need to be not only shifted, but also
stretched with respect to each other in order to obtain a meaningful point-wise align-
ment. Stretching can be obtained by means of gap insertion at specific positions of one
of the two electropherograms under alignment.

Despite the above-mentioned peculiarities, the correlation between electrophero-
grams retains the additive property of the standard correlation. Hence, the alignment
corresponding to the maximum correlation can be incrementally determined by means
of dynamic programming techniques. In the next subsection we outline a modified ver-
sion of the NW algorithm that handles electropherograms maximizing their correlation.

Dynamic Programming Alignment Algorithm. For the sake of simplicity, we sketch
the NW modified algorithm considering single-component traces. We will then gen-
eralize to the 4-component case. As previously introduced in section 1.2, the NW al-
gorithm incrementally computes the optimal path through the dynamic-programming
matrix (D P matrix) according to a specific optimality criterion. At each step a new
entry (say, 4,j) of the matrix is computed as the maximum score achieved by means of
one of the three possible moves leading to that position: a diagonal move that adds a
replacement score (that is a reward for the alignment of the it" element of sequence F
with the j*" element of sequence R) to the value stored in entry (i — 1, j — 1); a vertical
move that adds a deletion cost to the value stored in entry (¢ — 1, j); and a horizontal
move that adds an insertion cost to the value stored in entry (%, j — 1). As far as align-
ment is concerned, insertions and deletions are symmetric moves: deleting an element
from sequence F has the same effect of adding an element in sequence R. Although both
insertions and deletions are needed to stretch the two sequences in order to achieve the
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best alignment between them, the two operations are nothing but gap insertions in one
of the two sequences.

According to the above observations, we outline the modified NW algorithm refer-
ring to two basic operations: alignment between existing samples of the two electro-
pherograms (corresponding to a diagonal move in DP matrix) and insertion of a gap
in one of the two electropherograms (corresponding to vertical or horizontal moves in
the DP matrix). The score to be assigned to the alignment between existing samples of
the two electropherograms (diagonal move) is computed as the correlation between the

samples.

Sdiag(i,J) = L) F“’:}iffi(j) — Rayg)

where Fy,4 and R4 are the average values of the elements of F' and R, while o and
o g are their standard deviations.

In order to assign a score to a gap we refer to the role the gap will play in the final
alignment. After alignment, the two aligned electropherograms need to be processed
in order to fill all the gaps possibly inserted by the NW algorithm. Synthetic samples
need to be created to this purpose and added at proper positions. Such synthetic samples
are introduced by interpolating the existing samples on both sides of a gap. In this per-
spective, the score to be assigned to a gap insertion in one of the two electropherograms
(vertical or horizontal moves) is computed as the correlation between the synthetic sam-
ple (generated by interpolation) to be added to bridge the gap and the original sample
of the other trace aligned with the gap. The score assigned with an horizontal move
leading to entry (3, j), corresponding to a gap insertion in the forward trace F, will be:

(EOECH) _ g Y(R() - R

avg)

Shor(iaj) = CFOR

while the score assigned with a vertical move will be:

(F(3) — Fapg)(BOERUHN _ B,y

Sver(isj) = OCFOR

If we deal with 4-component time series rather than with single-component traces,
we can extend the algorithm by maximizing the sum of the four correlations:

3 (F®(6) — Fan)(RM () — REE))
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where index h spans the four components A, C, G and T'.



