COMPUTER APPLICATIONS
IN FINITE MATHEMATICS AND CALCULUS

SECOND EDITION

" CAROLYN L. MEITLER
MICHAEL R. ZIEGLER

COMPUTER APPLICATIONS
IN FINITE MATHEMATICS AND CALCULUS

Second Edition),

CAROLYN L. MEITLER
Marquette University

MICHAEL R. ZIEGLER

Marquette University

Dellen Publishing Company
San Francisco and Santa Clara, California

Copyright 1984 by Dellen Publishing Company, a division of
Macmillan, Inc.

Printed in the United States of America
All rights reserved. No part of this book may be reproduced or
transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or any information storage and
retrieval system, without permission in writing from the Publisher.
PERMISSIONS: Dellen Publishing Company

400 Pacific Avenue

San Francisco, California 94133
ORDERS: Macmillan Publishing Company

Front and Brown Streets

Riverside, New Jersey 08075

Collier Macmillan Canada, Inc.

Library of Congress Cataloging in Publication Data

ISBN 0-02-431490-0

Printing: 1 2 3 4 5 6 7 8 Year: 4 5 6 78 90

PREFACE

The purpose of this book is to present the computer as a tool that can
be used as part of the problem-solving process within the context of a
college mathematics course. The solutions of many problems involve calcu-
lations that are best performed on a computer. The programs in this book
can be used to solve such problems, eliminating the need to restrict one's
attention to oversimplified problems that can be solved easily by hand.
Furthermore, since the level of computer expertise expected of college
graduates is steadily increasing, the inclusion of the material in this
book in a college mathematics course will give students additional hands-on
experience which will be valuable in their future professional activities.

The topics presented in this text have been selected from those covered
in the following series of college mathematics texts by Raymond A. Barnett
and Michael R. Ziegler:

College Mathematics for Management, Life, and Social Sciences
Finite Mathematics for Management, Life, and Social Sciences
Calculus for Management, Life, and Social Sciences

Applied Calculus for Business and Economics, Life Sciences, and
Social Sciences

Applied Mathematics for Business and Economics, Life Sciences, and
Soctial Seciences

Definitions of important terminology, examples, and exercises are
included for each topic. Thus, this book can be used in conjunction with
any of the books in the above series or any other textbook that deals with
finite mathematics, introductory calculus, or both.

Thirty-seven BASIC programs are presented in this book in eighteen
chapters. At least one example and sample execution are included for each
program. These provide sufficient information so that students with no
previous computer experience can use the programs with a minimum of instruc-
tion. The first two chapters contain a brief introduction to the use of
BASIC programs on a computer and some very simple programming concepts.
Chapters 3 through 11 cover topics that are usually found in a finite mathe-
matics course and Chapters 12 through 18 deal with topics that are related

iii

to introductory calculus. The Appendix contains a summary of the features
of the BASIC language used in these programs. Answers to the odd-numbered
exercises are included in the back of the book. These answers include the
output generated by the program used in the exercise.

The programs are written in a structured format with complete variable
definitions and many comments. Each program has been kept as simple as
possible, with legibility always considered to be more important than
efficiency. No advanced programming concepts are used. Level 0 BASIC, as
dexcribed in the Conduit BASIC Guide (Conduit, The University of Iowa), is
used throughout in order to make the programs as portable as possible. A
VAX-11/780 computer was used to write all the programs and produce all the
computer output that appears in this book. Whenever possible, the output
from programs was formatted to fit in a 40-column display; however, some
programs do produce output that cannot conveniently be printed in 40 col-
umns. These programs will have to be modified by the user whose display is
limited to 40 columns or fewer. It may also be necessary to make other
minor changes in some of the programs, such as changing the exponentiation
symbol from ** to ~.

It is assumed that the instructor will provide the students with infor-
mation concerning loading, executing, and storing programs, and other system
dependent operations. In addition, students will have to learn how to
change data statements and function definitions, and to write arithmetic
expressions in BASIC. This material is covered at the appropriate points
in the book. Students are not assumed to have had any previous programming
experience, and no attempt is made to teach computer programming. There
are a few exercises that involve making changes in programs in the book
which can be assigned to students who are familiar with BASIC programming.

All the programs are available on diskettes for APPLE II computers and
IBM personal computers. One of these diskettes can be obtained from the
publisher without charge by any institution that adopts this book or any of
the books in the series that was listed earlier in this preface. Instruc-
tors and students have permission to make additional copies of these programs
for instructional purposes.

There are several ways that the material in this book can be incorpor-
ated into a mathematics course, depending on the amount of time available
and the availability of computing equipment. Instructors can use the pro-
grams to produce material for classroom use without requiring the students
to use the computer at all. For example, students can be asked to interpret
the results of a computer solution to a linear programming problem supplied
to them by the instructor. Or students can be instructed to execute programs
prepared by the instructor to illustrate and reinforce the concepts discussed
in the classroom. Markov chains and Newton's method are two good examples of
topics whose presentation can be enhanced by just having students execute
programs which already contain the necessary data statements and function
definitions. Finally, if students are taught how to enter new data state-
ments and function definitions, then they can use the computer to solve
problems from their textbook or from this book and to experiment with prob-
lems of their own construction.

iv Preface

We would like to express our appreciation to Don Dellen and his staff
for their support of this project, our colleagues at Marquette University
for class testing much of the material in this book, Glenn Saito for his
assistance in preparing the microcomputer diskettes, and Jo Ann Vine for
her excellent production of the book.

CAROLYN L. MEITLER
MICHAEL R. ZIEGLER

Preface

CONTENTS

PREFACE

PROGRAMS

CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER

O 00 N O U BBW N =

e e e T e T o T = S Uy S
0 N Y 1B~ W N = O

APPENDIX

ANSWERS TO

144

ix

INTRODUCTION TO COMPUTERS 1
FUNDAMENTALS OF PROGRAMMING 9
SYSTEMS OF LINEAR EQUATIONS 24
INVERSE MATRICES 39

MATRIX MULTIPLICATION AND INCIDENCE MATRICES
LINEAR PROGRAMMING 73
MATHEMATICS OF FINANCE 95
SIMULATION 111

MARKOV CHAINS 122

DESCRIPTIVE STATISTICS 136
BINOMIAL DISTRIBUTION 147
METHOD OF LEAST SQUARES 154
FUNCTIONS AND LIMITS 165
BISECTION 175

NEWTON'S METHOD 186
INTERPOLATING POLYNOMIALS 198
NUMERICAL INTEGRATION 210
EULER'S METHOD 220

THE BASIC LANGUAGE 237

ODD-NUMBERED EXERCISES 241

57

vii

PROGRAMS

DIST
SLOPE
TABLE
CHANGE

GAUSS

INVERT
INVEQN

POWER

LNPROG
COMINT
COMTBL

ANNTBL

ANNINT

FUTVAL
PREVAL
AMORT

COINS
GAME
GAME1

MARKOV

Finds the distance between two points in the plane 9
Finds the slope of a line 12
Prints a table of values for a function 15

Determines the number of coins of each denomination required
to make change 19

Uses Gaussian elimination to find the reduced form of an
augmented coefficient matrix 26

Uses Gaussian elimination to find the inverse of a matrix 39

Uses Gaussian elimination to find the inverse of a matrix
and then uses the inverse to solve a system of equations 43

Computes 4, A%, A%, ... and 4 + A%, A + 4% + A%, ...
for a matrix 4 57

Solves linear programming problems by the big M method 73
Computes compound interest 96

Computes compound interest and prints the amount at the
end of each compounding period 97

Computes compound interest and prints the amount at the
end of each year 99

Computes compound interest and prints the amount at the
end of each year and the interest earned during that year 100

Computes the future value of an ordinary annuity 102
Computes the present value of an ordinary annuity 104

Computes the payment required to amortize a debt and
prints a table of amortization payments 106

Simulates repeated tossing of five coins 112
Simulates a simple coin tossing game 115

Simulates repeated plays of a simple coin tossing game and
prints the average winnings 118

Computes the state matrices for a Markov chain 123

ix

STATS1

STATS2

BERN
BERTBL
LSTSQR

TABLE1
LIMIT

BSCT

BISECT

NTWN

NEWTON

INTERP

SIMP1

SIMP2

EULERI1

EULER2

EULER3

Finds the mean, median, range, and standard deviation
of a data set 138

Finds the mean and standard deviation for a grouped data
set and prints a frequency table 141

Computes Bernoulli probabilities 147
Computes a table of Bernoulli probabilities 150

Computes the least squares line for a set of data points
and estimates y values for given x values 155

Prints a table of values for a user-defined function 165

Evaluates f(a + k) and f(a - h) for successively smaller
values of h 169

Approximates the root of a function by the bisection meth
Execution is terminated by the user 176

Approximates the root of a function by the bisection meth
Execution is terminated when the root has been approximat
to a specified accuracy 180

Uses Newton's method to approximate the root of a functio
Execution is terminated by the user 186

Uses Newton's method to approximate the root of a functio
Execution is terminated when the root is approximated to
specified accuracy 190

Computes the coefficients of the interpolating polynomial
and evaluates the interpolating polynomial at given value
of x 199

Uses Simpson's rule to approximate a definite integral.
The number of subintervals is supplied by the user 211

Uses Simpson's rule to approximate a definite integral
to a specified accuracy. The number of subintervals is
determined by the program 214

Uses Euler's method to approximate the solution of the
differential equation y' = f(x, y) on an interval 222

Uses Euler's method to compare the approximate and exact
solutions to the differential equation y' = f(x, y) on
an interval. The exact solution must be supplied by the
user 226

Uses Euler's method to approximate the solution of the
differential equation y' = f(x, y) at a single value of x

od.

od.
ed

n.
n.

a

]

230

Programs

CHAPTER 1 INTRODUCTION TO COMPUTERS

This chapter provides a brief introduction to the structure
of a computer and the use of an operating system. Variables,
numbers, and algebraic expressions are also discussed.

The computer is a powerful tool for solving mathematical
problems because of its ability to store large amounts of
information and to perform many calculations in a short period
of time. Both the instructions for the operations the computer
is to perform and the information to be used in these opera-
tions can be stored in the computer. The set of instructions
is called a program. The program can be changed, stored, and
used repeatedly, so that a single computer can solve a wide
variety of problems. The instructions must be written in one
of several special languages, called programming languages,
which the computer can understand. One of the most popular
programming languages is the BASIC language. This the language
used throughout this book.

STATEMENTS AND SYSTEM COMMANDS

In order to use the computer to solve problems, you must be
able to give instructions to the computer. The instructions
which you will giving the computer can be divided into two
categories—statements and system commands. Statements are
instructions which direct the computer to perform an operation,
such as adding two numbers, printing a number, etc. A program
is a collection of these statements identified by line numbers.
This book presents a collection of programs which will help

you solve certain mathematical problems that would be extremely
difficult and time-consuming to do by hand. A description of
those statements from the BASIC language which we will be using
is in the Appendix.

System commands instruct the computer to perform certain
actions with entire programs. In order to understand how to
use these commands, it is helpful to view a computer as a sys-
tem of interconnected components. To begin with, the central
processing unit, or CPU, is the heart of any computer. This
is the component that actually carries out the instructions
given to the computer. The instructions for the program being
executed and the data being used by that program are both

Figure 1.1

stored in a second component, generally called the main memory.
All computers have a CPU and a main memory. The remainder of
the components can be quite varied. Typically, there is an
input device, such as a typewriter-like keyboard, and an output
device, such as a TV screen or a printer. Finally, since the
instructions that are stored in the main memory may be
destroyed when another program is entered or the computer is
turned off, it is necessary to have some means of permanently
storing programs so that they can be used again. Magnetic
tapes, magnetic disks, and punched cards are the most common
auxiliary storage devices. For convenience in our discussions,
we will assume that a magnetic disk is being used for auxiliiay
storage. A graphic representation of the process we have just
discussed is shown in Figure 1.1.

INPUT N
DEVICE
CENTRAL MAIN
PROCESSING MEMORY
OUTPUT UNIT
DEVICE
AUXILIARY
STORAGE

System commands instruct the computer to perform certain
actions involving one or more of these components. The actual
form of the command will vary from one computer to another,
but the fundamental operations which must be performed are the
same on every computer. In order to effectively use a computer
system, you must be able to:

1. Begin the session with the computer.

2. Load a program from a disk or enter a new program from
the keyboard.

3. Display the program which is currently stored in the
main memory.

4, Make changes in the program which is currently stored
in the main memory.

5. Execute the program which is currently stored in the
main memory.

6. Save the current contents of the main memory on a disk.

7. End the session with the computer.

EXAMPLE OF USING SYSTEM COMMANDS

Since the procedure for beginning a session depends on the type
of computer being used, we will assume that we have started the
session. Suppose that we wish to perform the operations listed

Chapter 1

above on a program called SAMPLE which is already stored on
the disk.

Step 1 LOAD SAMPLE (ret)

This instructs the computer to locate the program called SAMPLE
on the magnetic disk used for auxiliary storage and to place it
in the main memory. (ret) represents the return key. You
press the return key to tell the computer that you have finished
entering a line.

Step 2 LIST (ret)

This instructs the computer to print the contents of the
portion of main memory where instructions are stored. The
computer prints

100 REM kkkkkkkkkk

110 REM * SAMPLE *

120 REM #&kkkkkkkk

130 PRINT "THIS IS A SAMPLE PROGRAM EXECUTED BY"
140 PRINT "YOUR NAME GOES HERE"

150 END

SAMPLE uses three statements from the BASIC language, REM,
PRINT, and END. REM is short for REMARK and indicates that

this line contains information for the person reading the pro-
gram. The computer ignores any line which begins with the word
REM. PRINT instructs the computer to print whatever is enclosed
within quotation marks. We will see other ways to use the PRINT
statement later. END is the last statement in any program.

Step 3 RUN (ret)

This instructs the computer to execute the program which is
currently in its main memory. In this example, the computer
would print:

THIS IS A SAMPLE PROGRAM EXECUTED BY
YOUR NAME GOES HERE

Obviously, the phrase YOUR NAME GOES HERE is not what we want
to be printed. Let's change the program so that an actual name
will be printed.

Step 4 140 PRINT 'ALEXANDER AARDVARK" (ret)

This instructs the computer to replace the original line 140
which is currently in the main memory, with the line that has
been entered as shown above. It is extremely important for you
to understand that only the current contents of the main memory
are changed by this command. The original version of SAMPLE
that is stored on the disk has not been changed. This type of
instruction can also be used to add or to delete lines in the
program in the main memory. To add a new line, use a line
number which has not been used before to insert the statement
in the proper position in the program.

Introduction to Computers 3

Step 5 145 PRINT "GOODBYE FOR NOW"

This instructs the computer to store this instruction in the
main memory between lines 140 and 150. To delete a line, type
the number of the line followed by (ret).

Step 6 100 (ret)

This instructs the computer to erase the instruction that is
stored in line 100. Now use the LIST command to see the
changes we have made.

Step 7 LIST (ret)

The computer prints

110 REM * SAMPLE *

120 REM *%kkkixxkkk

130 PRINT "THIS IS A SAMPLE PROGRAM EXECUTED BY"
140 PRINT "ALEXANDER AARDVARK"

145 PRINT "GOODBYE FOR NOW"

150 END

When we compare this with the listing printed in Step 2, we can
see that line 100 is gone, that line 140 has been changed, and
that line 145 has been added. We have changed only the con-
tents of the main memory. We have not altered the original
version of SAMPLE which is still stored on the disk.

Step 8 RUN (ret)

This instructs the computer to execute the current contents as
listed in Step 7. The computer prints

THIS IS A SAMPLE PROGRAM EXECUTED BY
ALEXANDER AARDVARK
GOODBYE FOR NOW

If we wish to store the program that is currently in the main
memory, we must choose a name for it. Using the same name—
that is, SAMPLE—may destroy the original version, so we will
choose a different name.

Step 9 SAVE NUSAMP (ret)

This instructs the computer to store the current contents of
the main memory on the magnetic disk under the name NUSAMP.
Step 9 is essential if you want to keep a permanent copy of
your program. A very common and frustrating oversight is to
enter a program, or to make extensive changes in a program,
and then forget to save the program before ending the session
with the computer.

This example does not include all of the BASIC system
commands. You may want to obtain a list of the system commands
for your computer to see if any of the commands on your computer
differ from the ones used in this example. You may also want to
learn the system commands that will delete a program from the
auxiliary storage, type a list of all the programs that you have

Chapter 1

stored on auxiliary storage, or prepare the main memory to
accept a new program that you wish to enter.

STORING AND RETRIEVING DATA FROM MAIN MEMORY

We mentioned earlier that both the program and the data used
by the program can be stored in the computer's main memory.

We will now see how to store and retrieve data in a program.
We will consider only numbers, such as the coordinates of a
point or the coefficients of a linear equation. The portion
of the main memory where data is stored can be visualized as a
collection of boxes. Each box has an address giving its loca-
tion in the memory and each box can hold one number. We do
not have to worry about the actual location of these boxes in
the computer's memory. Instead, we can use symbolic names for
these locations and let the computer worry about the actual
locations. As an example, consider this program.

100 LET X = 10
110 PRINT X
120 END

Line 100 instructs the computer to store the value 10 in a
memory location whose address is X. We do not know where
that location is, but the computer does. Line 110 instructs
the computer to go to the location whose address is X and to
print the value of the number that is stored there. It is
very important to understand that the symbol X represents
the location of a number that is stored in the computer's
memory, not the value of the number. Let us look at another
example.

100 LET X = 10

110 PRINT "FIRST X =", X
120 LET X =X+ 5

130 PRINT "NOW X =", X
140 END

Line 100 is the same as in the previous example. Line 110 has
been modified to print the phrase "FIRST X =" before printing
the value that is stored in the location whose address is X.
Line 120 requires very close examination. The computer will
perform the following actions when it executes this line.

1. Locate the memory position whose address is X.

2. Obtain the value of the number that is stored there
(in this case, 10).

3. Add 5 to this value, obtaining a new value of 15.

4. Store the new value in the memory location whose
address is X.

Notice that the previous value of 10 is destroyed by this
action. A memory box can hold only one number at a time.
Line 130 instructs the computer to print the phrase "NOW X ="
followed by the value currently stored in the location with

Introduction to Computers 5

address X. Executing this program produces the following
output:

FIRST X = 10
NOW X = 15

As this example points out, the same location can hold
different values during the course of a program. For this
reason, a symbol such as X in the program given above is
called a variable. To be precise, a variable is a symbol that
represents the address of a location in the memory of the com-
puter where the value of a number can be stored. A value can
be stored in that location by using the variable in a LET
statement.

It is unfortunate and somewhat confusing that the term
"variable'" has a slightly different meaning in mathematics.

In algebra, you learned that a variable is a symbol which
represents the value of a number. In computing, a variable is
a symbol which represents the location of the value of a num-
ber. These two interpretations are not equivalent. As we
have previously explained, the statement "LET X = X + 5" makes
perfectly good sense to a computer. It does not make sense as
an algebraic equation. In computing, this statement means
"assign to the location whose address is X the value that is
obtained by adding 5 to the value currently stored in the
location whose address is X." This is often shortened to

"let X be assigned the value X plus 5."

So far we have used only the letter X to represent a
variable. In BASIC you can use any of the letters of the
alphabet or any of the letters followed by a single digit to
designate variables. Thus, A, M@, and Z9 are all valid vari-
able names, while AA, MO, P#, and Z19 are all invalid variable
names. (@ is used to distinguish the number zero from the
letter "oh.'")

NUMBERS IN BASIC

Notice that, in addition to the variable X, the preceding
program used the numbers 5 and 10. The rules for using num-
bers in BASIC are fairly simple. A minus sign goes in front
of a negative number. The plus sign may go in front of a
positive number, but it is not required. If a decimal is
used, there must be at least one digit before the decimal
point and at least one digit after the decimal point. Commas
are not used within a number. In BASIC, commas are used to
separate numbers in a list. The computer will interpret the
number 1,900,400 as a list of three numbers: the number 1,
followed by the number 900, followed by the number 400. It
will not read this as the number one million, nine hundred
thousand, four hundred. The total number of digits that can
be used in a number depends on the computer you are using,
but almost all will accept numbers with seven or eight digits.
The computer will also accept numbers that have been written
in scientific or exponential notation. The exponential form

Chapter 1

for 1900400 is 1.9004E+6 and is interpreted as 1.9004 x 1068,
The exponential form for -0.000215 is -2.15E-4 and is inter-
preted as -2.15 x 10™%. The computer will automatically use
exponential notation when it is printing very large or very
small numbers.

EXPRESSIONS IN BASIC

In order to solve mathematical problems on a computer, it is
necessary to know how to write arithmetic expressions in the
BASIC language. The symbols for addition and subtraction are
the usual ones, + and -.

Example. The linear expression & - y + 5 is written as
X - Y+ 5 in BASIC.

The symbol for multiplication is * and must be used to indi-
cate each multiplication operation.

Example. The linear expression 2x + 4y - 7 is written as
2%X + 4%Y - 7 in BASIC.

Division is denoted by /. Parentheses must be used if the
divisor has more than one term in it.

1 1. .
Example. E-+-g is written as 1/X + 1/Y, but T+ 7

as 1/(X + Y).

is written

Exponentiation is denoted by ~, **, or 4, depending on the
keyboard of the computer being used. We will use ** through-
out this book.

Exgmple. The quadratic expression 2x® + 3x - 5 would be
written as 2%X**2 + 3*%X - 5.
The expression vz + 2 would be written as
(X + 2)%%(0.333333) or as (X + 2)*%(1/3).

Parentheses are also used to avoid writing expressions with
two possible interpretations.

Example. The expression 8/4/2 could be interpreted as

8 8
4 _ 8 _ A2
el 4, or as 7 == 1.

In fact, the computer would choose the second interpretation,
but the problem can be avoided by using parentheses in the
following ways. 8

If you want —%—3 write 8/(4/2), and if you want —%—,

2
write (8/4)/2.

Introduction to Computers

CHAPTER 1

EXERCISES

1.

In order to familiarize yourself with the system commands
for your computer, repeat each of the steps listed in the
text for program SAMPLE. Remember, some of the system

commands on your computer may differ from those used here.

Giventhat X = 2, Y = 3, and Z = 4, find the value of each
of the following BASIC expressions.

(a) X+%Y (f) Z2- XX-Y
(b) X + (Y/2) (g) (Z/X)*Y

(c) X + (Y*Z) (h) (Z*%Y) / (X*%2)
d) X+ Y)*z 1) E+D*X +Y
(e) Z-X-%Y (3) (Y**X)**Z

In each of the following program fragments, determine the
values stored in X, Y, and Z after all the statements have
been executed.

(a) 100 LET X = 2 (c) 1000 LET X = 4
110 LET Y =X 1005 LET Y = (X/2)*3
120 LET Z =X + Y 1006 LET Z =X + Y

@ 20 e s e Emanioss
520 LET Y = X*%2 - 1
535 LET X =X+Y
560 LET Z = X + 2%Y

Write the following algebraic expressions as BASIC
expressions.

(a) «° (£) (a+ 4)2
() vy (g) pr+pq
(¢) 32% - 422 4+ 22 -5 (h) %%

@ VaZ ¥ o2 (1) c%-

© =53 (3) @

Write each of the following decimals in BASIC exponential
form.

(a) 25.637 (d) -0.0000001
(b) -35674.57 (e) 621342000000
(c) 0.0042567 (f) 2.78183

Write each of the following numbers in ordinary decimal
form.

(a) 3.21E+04 (c¢) 9.9999E-01
(b) -2.1356E+06 (d) -9.876E-03

Chapter 1

