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Preface to the English
edition

We are happy to welcome the English translation of our book, which origi-
nally appeared under the title ‘Opérateurs pseudo-différentiels et théoréme
de Nash-Moser’ in 1991 (InterEditions/Editions du CNRS, Paris).

Though the world of partial differential equations has changed a lot
during these years, we think that the elementary presentation of the subjects
touched upon in our book is still up to date and can be useful; thus, we
made no changes, except for correcting some misprints. On the other hand,
several remarkable books on partial differential equations have appeared
since: though their scopes largely exceed that of our book, we thought it
relevant to mention them in our bibliography.

Finally, we wish to thank the translator, Dr. Stephen S. Wilson, and the
editorial board of the AMS, who worked to produce this new edition of our
work.

Orsay, November 2006 Serge Alinhac and Patrick Gérard

Translator’s note

The numbering system I have used in my translation is essentially that employed
by the authors in the original French edition so that the actual equation numbers
etc. are the same in both versions. I did, however, make certain changes to the
cross-referencing system: for example, to remove ambiguity, outside of Chapter 11
Exercise A.1 of that chapter may be referred to here as Exercise IT1.A.1 although
within Chapter II it is referred to as Exercise A.1.

Cheltenham, February 2007 Stephen S. Wilson
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General introduction

This book provides an elementary exposition intended for students who have
completed four years’ study of university level mathematics. A knowledge of
the elements of functional analysis, Fourier analysis and distribution theory
(including, in particular, Fourier analysis in S and §’) is assumed. Chapter 0
contains a reminder of the notation, concepts and main results used in the
remainder of the book (with references). On the other hand, no knowledge
of partial differential equations is needed, although it will be beneficial to
have received an initiation to the topic.

The book stems from a course on ‘Pseudo-differential operators and the
Nash—-Moser theorem’, presented at the Ecole Normale Supérieure (ENS)
from October 1986 onwards, to second-year students studying for the degree
of Master of Fundamental and Applied Mathematics and Computer Science.

Although the topics covered largely form the subject of research litera-
ture, we have striven to avoid any scholarly discussions, ‘veiled references’
and sibylline allusions, which might open chasms beneath the reader’s foot-
steps. A particular presentation of the subject is selected and developed
in each chapter: the commentary at the end of each chapter indicates the
sources, differing approaches, certain current extensions, and the connec-
tions between the topics handled.

Finally, we have assembled numerous exercises, divided into two classes.
Elementary exercises are intended to help readers assimilate the course and
monitor their progress. Other more complex exercises, marked with an
asterisk (), present recent developments which have sometimes only been
published in journal articles: we crave their authors’ forgiveness for this
simplification! These exercises, unlike those in certain famous treatises, can
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2 General introduction

be effectively solved by real students, as experience of the teaching at ENS
has shown.

It was our wish that this text should also be useful to researchers as
a simple and self-contained introduction to subjects with which they are
unfamiliar.

The dual purpose of these notes led us to keep them short, sometimes
at the expense of a certain denseness of the text (which we believe is essen-
tially accessible to motivated students). In particular, we had in mind our
many colleagues in ‘applied mathematics’ who wish to use the Nash—Moser
theorem in their research or to keep themselves up to date on microlocal
analysis, without delving into the arcana of the specialist literature: they
will be able to read the desired chapters independently of each other.

The choice of the material presented is a matter of personal taste and
of the fields of research of the authors who, incidentally, believe that certain
difficult (nonlinear) problems cannot be solved without a sufficient knowl-
edge of pseudo-differential operators.

The authors are indebted to numerous mathematicians (cited in the
commentaries) who have inspired them to present the subjects dealt with,
and, in particular, to L. Hérmander, to whom the mathematical contents of
Chapter I and Section III.C are largely due. The Bibliography at the end
of the book indicates the sources used.

While presenting important concepts which are the true starting points
for numerous recent developments, we have sought to end up with real the-
orems: microlocal elliptic regularity; propagation of singularities; existence
of solutions of quasilinear hyperbolic systems; existence of isometric embed-
dings; the Nash-Moser theorem. The plan of the book is as follows.

In Chapter I we present the ‘minimal’ theory of pseudo-differential op-
erators, in a global context (on R™), which turns out to be very nice in
practice. The main points here are the notion of the symbol, the symbolic
calculus for operators, the action in Sobolev spaces and the invariance under
change of coordinates. The text presents only a few concrete applications
and the most technical proofs are brought together in the appendix, in order
to enable the reader to obtain an overall view of the subject. The exercises
in Chapter I, which are particularly numerous, provide an introduction to a
number of variants of the theory proposed and present several applications,
notably to the analysis on compact manifolds.

Chapter II brings together three themes. Section A presents the Little-
wood-Paley theory of ‘dyadic decomposition’ of distributions: this system-
atizes the natural division of the space of frequencies ¢ according to their
size |€], associated with the classical symbolic calculus of Chapter I. This
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very simple theory allows one to rapidly obtain interesting properties of
composite functions in Sobolev and Hoélder spaces. Section B presents the
concept of the wave front set and its links with pseudo-differential operators:
this time it is a matter of the conical division of the space of frequencies &
according to their directions ¢ € S™~!, associated with the classical symbol
homogeneities. Finally, Section C deals with hyperbolic energy inequali-
ties for which pseudo-differential operators turn out to be an effective tool.
Thus, Chapter II serves to present very useful applications of the ‘dry the-
ory’ of Chapter I, while preparing the material and the concepts which will
be needed in Chapter III.

The final chapter discusses certain problems of a nonlinear nature which
arise in geometry or in analysis and which may be reduced to perturbation
problems. The plan of this chapter reflects the various situations which
one may encounter: ‘elliptic’ situations in which the usual Banach implicit
function theorem suffices; ‘fixed-point’ situations, such as one often finds in
nonlinear hyperbolic problems or again in the isometric embedding problem;
and, finally, situations where the ‘loss of derivatives’ is too great and a
Nash—Moser technique has to be used. The Nash—Moser theorem relies
completely on the acquisition of a priori ‘tame’ inequalities; the reader who
is already familiar with a priori inequalities (presented in Chapter I and
Section II1.C) will grasp the concept of ‘tame’ estimates through its clear
link with Littlewood—Paley theory and the paradifferential calculus of J.-
M. Bony (Section II.A).

This establishes the underlying cohesion of this book, which can be
schematized in the accompanying diagram.
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In this spirit, we were recently very happy to learn of the work of
L. Hormander [H9], explaining the links between pseudo-differential and
paradifferential operators, fixed-point methods and the Nash-Moser theo-

rem.
Finally, we are grateful to G. Ben Arous and J.B. Bost for their kind

and valuable suggestions.



Chapter 0

Notation and review of
distribution theory

In this chapter, we introduce the various notation used in the book, while
recalling a number of elements of distribution theory and Fourier analysis
which will be used throughout. In the following chapters, we shall thus
assume that the reader is familiar with these notions. Nevertheless, a less
advanced student will be able to find the results cited below in the book by
J. Chazarain and A. Piriou [CP] (Chapter 1, Sections 1, 2 and 4) or in that
by W. Rudin [R]. Readers with little knowledge of distributions are advised
to read the book by L. Schwartz [S] beforehand, while students who wish to
test their knowledge in this area will find a large number of exercises with
solutions, together with review material in the work of C. Zuily [Z].

1. Spaces of differentiable functions and differential
operators

Let €2 be an open subset of R”. If k is a nonnegative integer, then we
let C*(€2) denote the space of k-times continuously differentiable functions
on ) with values in C. Similarly, C°°(£2) denotes the space of indefinitely
differentiable functions on 2. This notation extends first to the case where
0 = M is a differentiable manifold and, second, to the case where the co-
domain is not C but a topological vector space F on R: we then denote the
corresponding spaces by C*(Q, E) and C®(, E).

For k € N U {co}, C5(Q) denotes the subspace of C*(Q) whose ele-
ments are zero outside a compact subset of 2, while C* () is formed by the
restrictions to Q of elements of C*(R").

5



6 0. Notation and review of distribution theory

We shall use multiple indices to denote the partial derivatives of an

element of C¥(Q)). A multiple index o = (ay,...,ay) is an element of
N", its modulus |a| is by definition |a| = a1 + -+ + ap, and we set a! =
aq!l...apl. For j € {1,...,n}, the derivative % will also be denoted by

ij or 0; when there is no risk of confusion. For reasons associated with the
Fourier transformation (see Section 5 below), it is also useful to introduce
the notation D; = “iZ’-)%j~ A higher-order derivative will then be denoted
by 0% =0 ...9%" or D* = D' ... D%~. We shall also use this convention
to denote the monomials constructed in the components of a vector of R™.
Thus, if # € R?; 2® = 7> .. .22,

A differential operator on § is a finite linear combination of derivatives
of arbitrary orders with coefficients in C*°(Q2). It is said to be of order m
if it does not include derivatives of order greater than m. In other words, a
differential operator of order m on 2 can be written as

P = Z aq(z)D%,
la|<m

where the a, € C*(2) are the coeflicients of P. In this form, it is easy to
see that P defines a linear mapping from C**™(Q) to C*(Q) for all k. The
symbol P is the polynomial function in ¢ defined on 2 x R™ by

p($,§) = Z aa(x)§a7
lee|<m

while its principal symbol of order m (or principal symbol if there is no risk
of confusion) is the homogeneous function in &

Pml(e,6) = Y aq(z)E®,

lal=m

2. Distributions on an open set of R"

a) A distribution on an open set €2 is a linear form u on C$°(1) satisfying
the following continuity property: for any compact subset K, there exist an
integer m and a constant C such that for all ¢ € C§°(Q) which are zero
outside K,

[(u, 0)] < C'sup sup [8%p(z)].
€K |o|<m
The space of distributions on 2 is denoted by D’(Q). In particular, it con-
tains the space Llloc(Q) of locally integrable functions on Q, via the following
identification:

(21)  VpeCR(Q), V€ LL(Q), (f¢) = / f(2)p(x)dz.
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Another example of a distribution is given by the Dirac mass at a point. If
zo € Q and ¢ € C§°(?), we denote (dz,,») = @(x0).
b) Let u € D'(€2). Define d;u € D'(Q2) by the formula

<8ju’ p) = _<u’ 8]'90)’
which, taking into account the identity (2.1), extends the operator 8; previ-
ously defined on C*(f2) to distributions. Similarly, if a € C®(Q), au € D'(Q)
is defined by

(au, 9) = (u, ap).
Thus, any differential operator P = Y a,D* extends to a linear mapping
from D'(2) to itself, via the formula,

<Pu’ 90> = <u’ tP90>7
where tPp = 3" (=1)l*D*(aq¢).

c) If ¥’ is an open subset of Q, and if u € D'(R2), then the restriction u|oy
of u to (' is just the restriction of the linear form u to the space C§°(Q)
C§°(£2). Then wu is said to be zero (resp. of class C*) on Q' if u|y = 0
(resp. ulgy can be defined by f € C*(£'), according to formula (2.1)). For
this definition to be manageable, it is important that one should be able to
recover u from its restrictions to the open sets of a covering of 2. This is
the object of the following lemma.

Lemma (Partitions of Unity). Let (Q;) be a family of open subsets of
such that @ =, Q. Then there exists a family of functions (p;) such that:

i) Vj,p; € C®(2), supp (¢;) C Q;,0 < p; < 1.
ii) For any compact subset K of Q, {j, K Nsupp w; # 0} is finite.
iii) In Q, 3 ; ¢j = 1. (This sum is well defined, following ii)).
In addition to the references already cited, the reader may refer to Ex-

ercise 6.1 of Chapter I for a proof of the above lemma (given under the
hypothesis that €2; is compact in §; the general case is an easy consequence).

Using this lemma, one can show, for example, that if Uj Q; = Q and if
ulg, = 0 (resp. ulg, € C¥) for all j, then u = 0 (resp. u € C¥(1)).

This leads us to the following definitions: the support of u (resp. singular
support of u) is defined to be the complement in Q of the points in the
neighbourhood of which w is zero (resp. u is of class C*). The support of
u is denoted by supp u; the singular support of u is denoted by sing supp w.
These are two closed sets, satisfying sing supp u C supp «, and the preceding
result can be paraphrased by the equivalences

u=0 & suppu=_0,
u€C*® <& sing supp u = 0.
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Finally, we note that if u € C°(f2), then the support of u defined above
coincides with the closure of {x € Q,u(x) # 0}.

The space of distributions with compact support in §2 is denoted by &’'(€2).
It is identified with the space of linear forms on C°°(§2) which are continuous
for the topology defined by the semi-norms

sup sup [0%p(z)|,
€K |a|<m

where K runs over the compact subsets of €2 and m runs over the integers.

3. Convolution

a) Let u and v be two C'* functions with compact support. We set

B uro) = [uwee-pdy= [u - o)y
The function u * v thus defined is C* with compact support and satisfies

(3.2) supp (u * v) C supp u + supp v.

This is called the convolution of the two functions u and wv.

Of course one can define the convolution of less regular functions. The
most natural extension relates to summable functions: if u and v belong to
L*(R™), then u * v defined by (3.1) belongs to L'(R"™) and we have

/]u*v |dx</|u )|dz - /|v )|dx.

However, it is not this extension which we shall use the most frequently,
but rather that described in sections b) and d) below, which relate to the
cases where u € D'(R"), v € C§°(R™), and then where u € D'(R"), v €
E'(R™).

b) Let u € D'(R™) and v € C§°(R"™); then the formula

u* v(r) = (u,vz), with vy(y) = v(z —y),

defines a function u * v of class C*® on R”. This function also satisfies

(3.3) 0% ux*v) = 0% *xv=ux*d%,

(3.4) supp (u * v) C supp u + supp v.
c¢) The convolution is the basis for a very useful reqularization procedure
which we now describe.

Let ¢ € C§°(R™) be nonnegative with integral equal to 1, and let € > 0;
we set ¢.(z) = e "p(z/e). Then if u € D'(R"), the family of C* functions
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Ue = U * . converges to u as € tends to 0, in the sense that
(3.5) v e C, [uclopie)d — v,

This procedure of approximation by regular functions is of interest be-
cause the mode of convergence of u. to u is essentially described by the
regularity of u. Thus, if u € C*(R"), u. converges to u in the sense of the
Semi-NOrms SUpye g SUP|q (< |0%v(x)|, where K runs over the compact sub-
sets of R"; if v € LP(R™) (1 < p < +00), the space of functions summable
to the pth power, then u. tends to w in LP.

Moreover, equation (3.4) shows that the support of u. is arbitrarily close
to that of u when ¢ tends to 0. Using a ‘cut-off function’, we thus extend
the regularization procedure to distributions defined on an open set  of
R"™, showing, for example, that C§°(Q) is dense in LP(Q2) if p € [1, +oo[ and
in D'(Q2) for the ‘weak topology’, i.e. in the sense of (3.5).

d) To define the convolution of two distributions, we first observe that
if w € D'(R™), v, p, € C(R™), then

/u *v(z)p(z)de = (u, 0 * @),

where we have set 0(x) = v(—x).

After having extended the operator v — o to distributions by
(0, 0) = (v, 8),
we set, for u € D'(R™), v € £&'(R™) and ¢ € CP(R?),
(uxv,p) = (u, 0 * ).
We thus define a distribution u * v on R”, which again satisfies (3.3) and
(3.5), to which can be added
(3.6) sing supp (u * v) C sing supp u + sing supp v.

For example, if § = dp denotes the Dirac mass at the origin, then for any
distribution u on R™, we have u * § = u. The convolution of distributions is
fundamental in the study of differential operators with constant coefficients.
An illustration of this can be found in Section I.1.1, where the proof of the
relation (3.6) is also outlined.

4. Kernels

Let ©; and Q9 be two open subsets of R?, and let K € D'(Qy x Q2). The
equation

(4.1) (Agv,u) = (K,u®v),
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where u € C§° (1), v € C§°(Q2), u®v(z1,x2) = u(x1)v(x2), defines a linear
mapping Ak : C§°(Q2) — D’(), which is continuous in the following sense:
for all w in C§°(£21), for all compact subsets K of €, there exist a constant
C and an integer m such that, Vv € C§°(£22) with support in K,

(42) [(Axv, u)| < Csup sup [8%(z).

€K |a|<m

When K € LL (£ x€2), equation (4.1) can be written in the more familiar

loc
form

AK’U(.Il) :/K(xl,:L’Q)’U(CCQ)dl‘Q.

In general, the distribution K is entirely determined by equation (4.1) and
is called the kernel of the operator Ag.

A theorem due to L. Schwartz ensures that any operator A : C§°(22) —
D’'(£21), which is continuous in the sense of (4.2), has a kernel. However, we
shall never use this theorem in what follows, since the operators which we
shall manipulate have readily identifiable kernels.

For example, the kernel of the differential operator P = > aq(x)D®* is
the distribution K(x1,22) = > an(z1)D*6(x1 — x2), where § is the Dirac
mass; the kernel of the operator of convolution by the distribution v €
D'(R™) is K(z1,x2) = u(xy — x2).

The notion of kernel thus gives rise to a more algebraic study of opera-
tors. For example, given an operator A with kernel K, it is easy to define
the transpose operator for A (denoted by 'A), characterized by

Vu e C§°, Yv € C§°, (Av,u) = (*Au,v).
It suffices to take ‘A to be the operator with kernel
tK(l‘l, 582) = K(CL‘Q, .’131).

The kernel also enables us to control the supports (and the singular
supports). For example,

supp (Axv) C {z1,3z2 € suppv, (x1,x2) € supp K }.

A similar relation exists for the singular support.

5. Fourier analysis on R"

a) We first introduce the space S of C* functions which decrease rapidly
on R™. This is the space of C*° functions v on R", satisfying

Va e N", VB e N",  sup |z*0°u(z)| < +o0.
zeR™



