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PREFACE

Since spectroscopy has become the main tool by which even beginning
organic chemists identify compounds and study their interactions, this book
has been designed to help advanced undergraduates and beginning graduate
students learn these important techniques. A large number of illustrations
have been included in each chapter so that students can learn in two ways,
through the visual and the numerical aspects of spectroscopy, and thus
reinforce their knowledge. Also included are a number of problems with
solutions, so that students can test their understanding of the material as they
study. Since the solutions are rather detailed, students can not only check
their answers but also check their reasoning, step by step. Instructors
wishing additional problems, without solutions, may consult the numerous
problem books referred to at the end of each chapter.

In addition to the usual topics of infrared, proton nmr, and mass spec-
troscopy, this text includes a chapter on the use of the increasingly routine
technique of !3C nmr spectroscopy and a chapter discussing a nonmathe-
matical treatment of the Fourier transform techniques used in modern nmr.
Furthermore, we have found it useful to precede the treatment of UV
spectroscopy with a brief introduction to simple Hiickel MO theory, which
gives additional insight into the meaning of electronic energy levels. Since
timesharing computers are now an accepted part of modern college life, two
timesharing versions of computer programs are included: one is for the
calculation of simple Hiickel energy levels, rather than deriving the hand-
calculation method in detail; the other is the LAOCOON III program for
the iteration of theoretical nmr spectra for a best fit with experimental
spectra.

JAMES W. COOPER

Medford, Massachusetts
February 1980
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CHAPTER ONE
INTRODUCTION TO
INFRARED SPECTROSCOPY

IR spectroscopy is the fastest and cheapest of the spectroscopic techniques
used by organic chemists. It is simply the measurement of the absorption of
IR frequencies by organic compounds placed in the path of the beam of light.
The samples can be solids, liquids, or gases and can be measured in solution
or as neat liquids mulled with KBr or mineral oil. Thus spectra can be ob-
tained in just a few minutes from partially purified materials in order to give
an indication that the reactions have proceeded as desired.

THE IR REGION OF THE ELECTROMAGNETIC
SPECTRUM

While it is common in physics to discuss light in terms of its wavelength, this
is only one of two common ways of referring to IR absorptions. Let us
represent the actual wavelength by 4, and recall that

€
V=g (1.1)

where v’ is the frequency of the light of wavelength 4 and c is the speed of
light. (We are reserving v, unprimed, to represent wave numbers as we will
see below.) We can refer to an IR wavelength as a number of micrometers
(or microns)

A=62x10"%cm = 6.2 um
or as a frequency. We could calculate the frequency from Eq. 1.1 and find that

o = 2.99 x 108 m/sec

" 6.2x107°m
This frequency is a large number and rather difficult to deal with, so that IR
spectroscopists, recognizing that wavelength and frequency are reciprocally

1

= 4.82 x 10'3 sec™ 1.




2 INTRODUCTION TO INFRARED SPECTROSCOPY

related, have selected a proportionality constant such that the frequencies
are numbers of a convenient size with which to work. Thus they have
defined the quantity wave number or v as
1
V=
(4 1in cm)

or
4
v = L (1.2)
(4 in ym)
and we then find that our wavelength of 6.20 um becomes
= 10* = 1613 wave numbers
©(6.20 um) '

The units of wave numbers are expressed as cm ™! or in kaysers. We thus
refer to the units of wave numbers as ‘ centimeters to the minus 1” or
more commonly as “ reciprocal centimeters.” Note that wave numbers are
directly proportional to frequency and thus to the energy of the absorption
while wavelengths are inversely proportional to energy, since

E=hv.

Wave numbers are not strictly frequencies, but are proportional to frequency,

and are thus commonly referred to as if they were frequencies. The actual

relationship between v and v’ is the speed of light ¢. If we express 4 in ¢m,

v 1

V=—=1 1.3

- =7 (1.3)

What are the frequencies or wavelengths which make up the electro-

magnetic spectrum? We divide light into infrared, visible, and ultraviolet in

order of increasing energy, and place microwaves below and X-rays above.
To compare them we will look at their relative wavelengths:

Wavelength
Name Meters Common Units
Microwaves 1 x 107'-1 x 107¢ 1 mm-10 cm
Infrared 1 x 107%-8 x 1077 100-0.8 um
Visible 8 x 1077-4 x 1077 800400 nm
Ultraviolet 4 x 1077-100 x 1078 400-100 nm
X-Rays 1 x 1078-5 x 107! 100-0.5 A



ABSORPTIONS OF ORGANIC MOLECULES 3

In this chapter we will be concerned only with IR frequencies, of which
only the middle of the range is of interest to organic chemists. We divide the
infrared region into the near, mid, and far IR as follows:

Near IR Mid IR Far IR
Frequency 14,300-4000 cm ™! 4000-650 cm ™! 650-200 cm !
Wavelength 0.7-2.5 um 2.5-15 um 15-100 um
Phenomena overtones of vibrations absorptions of ligands
C—H absorptions and bending and other low-energy
species

ABSORPTIONS OF ORGANIC MOLECULES

The reason that most organic chemists find IR spectroscopy of great interest
in their work is that most carbon-hydrogen, carbon—carbon, and carbon—
oxygen bonds stretch at frequencies in the mid-IR region. Furthermore,

12.5 -

des 3m e e e e e im e e
WAVENMBERS

Figure 1.1 The IR spectrum of water vapor and CO,, showing the large number of

lines due to vibrational transitions. Courtesy of Professor Peter Griffiths, Ohio

University.




4 INTRODUCTION TO INFRARED SPECTROSCOPY

these stretchings, rockings, and other motions are characteristic of the type
of compound and of its functional groups, resonance possibilities, and shape
so that the chemist can rapidly identify a number of important structural
features from an IR spectrum.

If we look at a high resolution gas phase IR spectrum of some simple
molecule,! as shown in Figure 1.1, we see that there are a veritable forest of
lines stemming from the various vibrational energy levels and the smaller
rotational energy levels which lie between them. These complex spectra are
not amenable to simple analysis, but fortunately they are not the type of
spectra with which we generally have to deal. In the liquid phase, the rota-
tional energy levels simply broaden out the vibrational transitions, leading
to a number of simpler, broad lines. These lines are characteristic of various
functional groups, substitution patterns, and n-overlap as we will see below.
While the lines are usually unsplit or singlets, we refer to related closely
spaced lines as doublets, triplets, and so forth.

VIBRATIONAL MODES IN IR SPECTROSCOPY

Obviously, there are many possible vibrations in a molecule. However, only
those stretchings which cause a change in dipole moment will show an IR
absorption. Those which show no change in dipole moment may be observed
by Raman spectroscopy (Chapter 10) and are often of less interest to organic
chemists. To describe the types of vibrations, let us consider the simple
water molecule. Since it is a bent molecule, we would expect to see various
wagging and scissoring motions as common stretches. These are illustrated
below:

~ <N ~

SYMMETRIg:L STIEETCH ASYMMEY:‘I]I-;(SZ6 S'I'RE_}CH SCI‘SSS9%RIN5
cm <m cm

Note that the asymmetric stretch is of somewhat higher energy than the
symmetric stretch, and that both require much more energy than scissoring
vibrations. These are classical stretching motions and occur exactly as drawn.

We now extend these vibrational modes to a —CH,— group, assuming
that the group is anchored so that only the C and the two H’s are actually in
motion. Clearly other groups attached to the CH, affect the nature of the
stretching which actually occurs.



VIBRATIONAL MODES IN IR SPECTROSCOPY
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Molecules also vibrate at combinations of two characteristic frequencies
suchasv, + v,andv, — v,. These combination bands are not always clearly
identified since they may be weak and/or in regions of the spectrum con-
taining many other lines.

One interesting phenomenon which is occasionally observed occurs when
a fundamental frequency is near an overtone from some other frequency.
The result is an increase in the intensity of the overtone and a decrease in the
fundamental. In the spectrum of cyclopentanone? shown in Figure 1.2, we

i ! i
, | ; ' L 746
L 4 i
2800 2400 2000

1728 | g

1 i i A i
4000 3600 3200 1800 1600 1400 1200 1000

Figure 1.2 Mid-IR spectrum of cyclopentanone.



