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DECENTRALIZED STOCHASTIC CONTROL OF IARGE-SCALE SYSTEMS VIA CONSTRAINED CONTROLLERS

by

Charles W. Sanders, Jr.,2

Edgar C. Tacker,3

Thomas D. Linton2

Louisiana State University

Baton Rouge,

Summary

This paper considers the decentralized control of
large-scale stochastic systems. Specifically, each
controller is allowed partial observations of the
local subsystem state and complete observations of
the interactions to the local subsystem; both ob-
servations taking place over noisy channels. Struc-
tural constraints are imposed on each controller and
it is shown that the optimum parameters can be ex-
pressed in terms of the solution to a nonlinear two
point boundary value problem.

I. Introduction

For a large-scale system the implementation of a
controller derived by a straightforward application
of existing stochastic control theory often requires
a prohibitive amount of data handling and computa-
tional capability. The planning phase of implementa-
tion may require the solution of Riccati equations
involving large matrices, while the on-line phase may
involve the management of very large information
flows. For example, the straightforward application
of existing theory to the problem of controlling a
string of high speed vehicles results in a control
signal for each vehicle which depends on the state of
each of the other vechicles in the string™. Thus,

as the number of vehicles in the string increases the
amount of on-line data handling increases significant-
ly.

Much of the research to date in large scale system
control has been oriented toward the resolution of
problems that occur in the planning phase. For
example the concept of €—coupling2’3 arose out of
the desire to decouple the computations involved in
solving the Riccati equations which result from the
application of existing theory. Using the €-coupl-
ing approach it is possible to approximate the
solution to the Riccati equation by a sequence of
solutions to decoupled equations of lower dimen-
sionality. However, the problem of managing the
on-line information flow remains. It is this

aspect of large-scale systems control that is of
interest in this paper.

The concept of decentralizationa provides a technique
for alleviating the on-line data handling require-
ments associated with the centralized controller.

In the terminology introduced by Mesarovic?, one form
of decentralized controller structure can be visual-
ized as consisting of a local controller or infimal
wnit M, for each subsystem together with a supremal
unit which coordinates the operations of the infimals.
In this paper-we are interested in the case where

all of the coordination' takes place in the planning
phase. Chong and Athans” have comsidered a somewhat
similar problem but have not related the results to
the detailed structure of the system.

! This research is sponsored by the Air Force Office

of Scientific Research, Air Force Systems Command,

USAF, under Contract F44620-68-C-0021.

2 Department of Electrical Engineering. .
Departments of Electrical and Chemical Engineering.
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In the next section the system model and problem
formulation will be given. This is followed by a
discussion of the controller structural constraints.
It is then shown that the optimum parameters can be
found in terms of the solution to a two-point boundary
value problem.

II. System Model and Problem Formulation

Consider a system, S, composed of a collection
{Si:i=1,2,...N} of N interacting dynamical subsystems,
We assume that the partitioning of S into the sub-
systems S, is either given or that a 'natural' parti-
tion exists. On the given time interval [t ,T] each
subsystem is described by the following model

ko= Agx, + Bimi + Lju, + w (1-a)
vy = Hizi + ni (1-b)
o 791
zi = [xi ui] (1l-¢)
N
u, = Lx =2 =
i i j=]_Lijxj sladly
j#i
wherein

for each tE[to,T] and each i

1: xi(t) is the state of Si

2 m,(t) is the control input to Si derived from
the local control umnit, M,

3. ui(t) is the in;gxag;;gniinnu; to Si derived
from the other subsystems,
v& is the local plant disturbance to Si’

S yi is the output of Si, and

6. TE is the observation noise.

The initial state, x,(t ) is assumed to be a gaussian
random vector with mean X, and covariance £° and the
noise processes W, and 1, are assumed to be zero mean
white gaussian processes with covariance W, and N
respectively., For i=1,2,..,N and te[to,T]i %

2

A g -0 <O ;
Py {Ai,Bi,{Lij.l 1524500sN) Hi,xi,Zi,Wi,Ni} is the
set of parameters describing local subsystem Si and

Yi(t) 4 {(yi(T),T):TE[tO,T]} is the on-line data

available from Si up to time t.

Letting x’ = [x/x)...x/]" and ' = [m/m’...m']’ be,
respectively, the Composite state and Cofitrol vectors,
the stochastic control problem for the composite sys-
tem (the overall problem) is to find a control law,
M*, such that m*(t) = M*(Y(t)) minimizes the cost
functional

E{x (TFx(T) + [Tx'(£)Qx(t)+n’(t)Rm(t)det} (2)

[e]
where E denotes mathematical expectation. In (2) Y(t)
denotes the information available to the controller up
to time t, and F,Q,R are given matrices with F and Q
positive semi-definite and R positive definite.

J =



III. Controller Structure

In the absence of any constraints on the permissible
information flow, the above problem has a well-known
so&ution (see e.g.(7), p.4l4). That is, if Y(t) =

U (P
i=1
realized by

i(t)) then the optimal controller can be

n(t) = -P(£)%(L)

X(t) = Ak(t) + Bm*(t) + K(t)[y(t)-HR(t)] (3)

- =0
x(t = X
t,)

in which the optimal gain matrices, P and K, may be
computed prior to to by solving the appropriate
Riccati equations and A,B,H are formed from the
corresponding subsystem matrices in an obvious manner.

In a large number of cases there are, of course,
overriding technical and economical considerations
which preclude the use of such a completely centralized
controller. In order to accurately reflect the nature
of control system design in a large scale system, one
must incorporate constraints on the information flow
structure. A basic and natural constraint that we
place on the controller is that it should consist of
a collection {M,: i=1,2,...,N} of control units in
which the 1nformation set available to each M, is

I (t) =P (t). That is, each control unit, M

is alloweé t%e local on-line data from S as weli as
the parameters describing S1 S

Motivated by the results obtained for the case of a
linear system with gaussian disturbances and
quadratic cost functional, we impose the further con-
straint that each Mi have the structure

X = EgXy Oy + 6y *
my = Dghy
Here E, is constrained to be an n,xn, matrix and the

signali %, is regarded as an estibatd of x The

rationale for choosing such a structure sh%uld be
evident. In the absence of interactions and with
local cost functionals defined appropriately the
optimal unconstrained controller has the form given
in (4).

Parameter Optimization

Under the above structural constraints the overall
design problem becomes one of choosing {c ,D ,E sC, 5
ii(to):i=1,2,..,N} to minimize the cost g}ven by (i)
subject to the system constraints (1).

A natural requirement to impose on each controller is
that for i=1,2,...,N %,(t) be an unbiased estimate of
x,(t) for every contro} and interaction input to S,.
% i
Thus, we require that
E{xi(t)-xi(t)|Yi(t)} =0 ¥m,u 4)
It is straightforward to show that a sufficient con-
dition for obtaining unbiased estimates is to choose

+ As pointed out by Aok18 it may be useful to allow
on-line communication between the local controllers
and thus increase the information set available to
each M,. However, in this paper we do not allow

the exchange of information between local control
units.

By = &Gyl
G; = By (5)
G2 ™ Lii

and i(t ) = , where G, = [Gil GiZ]'

Thus, subject to the constraint of unbiased estimates,
the overall design problem reduces to the determina-
tion of {Gil,Di 151,20 0e3N].

To determine necessary conditions for the optimal

parameters, combine the system and controller dynamics
to write

1 o

6"

or

£

v=Av+

where G = diag{Gizi=1,2,...,N}
Defining V(t) = E{v(t)v’(t)}, and using the fact that
the noise processes are white¥ one obtains*¥*

V(t) =AV + VA’ + W 7

Using the fact that if Y is an nxn matrix and v is an
n-vector then E{v’¥v} = trace{YE(vv’)},one can write
the cost functional (2) in the form

J = trace{FV(T) + jTa(t) v(t)dt} (8)
wh L
ereh o Iy o :
o | B0 w0 0
o °E°] e [oi D'RD]
and D = diag{Di:i=1,2,..,N}.

Equations (7) and (8) can be viewed as a reformulation
of the original optimization problem as a deterministic
parameter optimization in which it is desired to
minimize (8) subject to (7). Utilizing the matrix
minimum principle the necessary conditions for
optimality can be written as

V=AV+ VA’ +W

(9-2)
P=-Q-A'P-PA P(T) = (9-b)
% =0 i=1,2,...,N {97

1
-g—é’— “ 0 4%1,2,...,N (9-d)

i1

where % & w -

¥ = er{QV + (AV + VK'+ w)P’} (9-e)

We also assume that the individual noise processes
are mutually independent.

* -
N = diag{Ni:i=1,2,...,N].



Equations (9-a) - (9-d) represent a two point boundary
value problem which must be solved in order to de-
termine the optimal parameters. The relations (9-c),
(9-d) and (9-e) can be used to write the optimal

D,,G,. i=1,2,...,N in terms of the solution to this
béuna%ry value problem. The interested reader is
referred to” where a more detailed presentation of
these results is given.

IV. Conclusions

A decentralized controller in which coordination takes
place only in the planning phase of implementation
has been considered. The particular form of the con-
troller was chosen with a view toward satisfying
certain natural constraints on the information flow
structure which reflect the large-scale nature of the
system to be controlled. The optimal parameter values
were then shown to be expressable in terms of the
solution to a nonlinear two point boundary value
problem.
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COMPARISON OF TWO OPTIMAL TERMINAL CONTROL ALGORITHMS

Lawrence A. Wheeler
Departments of Electrical Engineering and Physiology
University of Florida, Gainesville, Florida

Summary

There are a wide variety of optimal control al-
gorithms available today. They vary in their gener-
ality and computational efficiency. This paper
presents a comparison of a 'general' technique and a
"special purpose" technique. The results show the
computational advantages of using a method which is
specially designed for the type of optimization
problem being solved.

Comparison of the Algorithms

The purpose of this paper is to present an exam-
ple of the huge computational advantages which can be
realized by using special purpose control algorithms
instead of general purpose control algorithms. The
two techniques which will be compared are an optimal
terminal control algorithm developed by Nahi and
Wheelerl (hereafter called the special purpose algo-
rithm) and a control algorithm based on one of Wolfe's
quadratic programming techniques2 (hereafter called
the general purpose algorithm). Both algorithms in-
volve transforming the original terminal control
problem stated in terms of differential or difference
equations into a quadratic programming problem. If
the initial formulation is in terms of differential
equations, the first step is to approximate the
differential equations with difference equations.
This approximation can be made arbitrarily good by
using a very small sampling interval. Since the size
of the resulting quadratic programming problem is in-
versely proportional to the sampling interval, the
choice of a sampling interval which yields both a set
of difference equations which are a "reasonable" ap-
proximation of the original differential equations
and a "reasonably" sized quadratic programming problem
is important. The relationship between the number of
sampling intervals and computation time will be
illustrated for both algorithms in the example. The
solution to the quadratic programming problem will
give the optimum values of the discrete control se-
quence.

Multiple amplitude-bounded controls and time-
varying system coefficients can be handled by both
techniques. The differences between the methods will
be summarized below.

The special purpose algorithm is based on the
control theory result that in a problem with n state
variables, an optimal control sequence can always be
found with no more than n of the magnitudes of the
control sequence at less than the corresponding maxi-
mum allowable values. This result is used to enable
the technique to avoid manipulating any matrices of
dimension greater than n x n.

The general purpose algorithm must solve a qua-
dratic program which includes a basis matrix whose
dimensions are a function of the product of the num-
ber of state and control variables and the number of
sampling intervals. For example in a problem with
three state variables, two control variables, and ten
sampling intervals, the linear constraint matrix
would have fifty rows and therefore a 50 x 50 basis

matrix, The special purpose algorithm would only in-
volve a 3 x 3 matrix since there are three state vari-
ables; however, it is very important to note that the
general purpose algorithm is much more powerful than
the special purpose algorithm. For example, it will
handle state variable constraints and summation (ap-
proximation to integral) type cost functionms,3

Example

To establish the relative performance of the two
algorithms the following example problem was run using
both techniques. The operating time was fixed and a
series of runs were made using different sampling in-
tervals to illustrate the relationship between sampling
interval length and computation time.

Problem Statement

min (4-x7(T))?2 + x5(T)2 + x5(T)2
u

subject to the constraints

X = Ax + Bu
where
0 1 0
A = 0 -7 1
0 0 -5

x(0) = [0 0 0]'
T = 6 seconds

This example problem was solved using sampling in-
tervals of 2, 1.2, .75, .6, and .4 seconds with each
of the techniques discussed above. The algorithms
were implemented in FORTRAN IV on a CDC 6600 computer.
The required central processor time versus the number
of sampling intervals for each algorithm is shown in
figure one. The special purpose algorithm is seen to
be more efficient than the general purpose algorithm
as the number of sampling intervals increases.

The optimum value of the cost function for a ter—
minal control problem will be zero if the desired
terminal state lies in the reachable set! and greater
than zero if it lies outside the reachable set. With
all other factors held constant including the system
operation time, the size of the reachable set is a
monotone increasing function of the number of sampling
intervals. For this example the desired terminal
state is an element of the reachable set for all of
the sampling intervals which were used; therefore, the
optimum cost function value for each case is zero.

The special purpose algorithm requires a finite number
of steps to develop the optimum control sequence which
yields the optimum value of the cost function so that
the optimum value of the cost function is always
achieved. The general purpose algorithm is a gradient
technique, therefore in general it does not achieve
the optimum value of the cost function in a finite
number of steps. In the example calculations the
general purpose algorithm was executed until the cost



function had become equal to .0001.
Conclusions

The special purpose algorithm was shown to be
considerably more effective than the general purpose
algorithm. The fact that the special purpose algo-
rithm did not manipulate progressively larger matrices
as the number of sampling intervals increased led to
dramatic computational savings.

The principal conclusion which should be drawn
from this result is that special purpose algorithms
which exploit the properties of the type of problem
being solved can be much more efficient than general
purpose algorithms. The user must make a trade-off
between the effort involved in developing a special
purpose algorithm and the added computational cost of
using a general purpose algorithm. Clearly if a
problem is to be solved only a few times a general
purpose algorithm should be used. On the other hand
if the problem is to be solved in real-time a special
purpose algorithm will probably be required.
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STATE SPACE INTERPRETATION OF ERROR CONSTANTS

C,; F. Chen
and
R. E. Yates
Electrical Engineering Department
University of Houston
Houston, Texas 77004

Introduction successive coefficients in a Maclaurin ex -
For'a given linear system pansien of T(s).
K
X = AX + bu 1 = P _1lg_ _1 o2_
~ ;,'f ~ ( ) T(S) 1—+f<—— —K—'S i S ¢ (8)
y = C'x (2) p v a

~ ~

and these error constants can be calculated

the input-output transfer function is
P # 1 as follows.

T(s) = T(s: - 37" (3)

( (a) position error constant Kp
Ho and Kalman performed the Laurent expansion

of T(s)
1 ) (= l) K ( Z ) ﬂ (Zk)
T(s) = ¢ (s1-a)"1b = § i (4) K= (9)
= ~ ~ .=1——|-
=11 m(p;)-(-1) K 1 (= z; )k l(zk)
where ;
_ AT, i-1 so; 'if
1= %3 2 (5) ’ 0%~
- T (D
are known as Markov parameters. Then they K= izl "3 (10)
organized Hankel's matrix H be defined by L h
— —_ 581 (2504 Z5 ()
Jl J2 J3 cemscce Jq
Iy Jg eevennnnnn. in (9), then K_ = » and T(0) = 1, which
gi = flo wammssisinssnss (6) implies that steady position error is zero.

: (b) velocity error constant K,

Jp Jp+q—l If K=o, i,e., T(0) = 1, then
to solve the realization problem. 1 g 1 N § 1 ?  H (11)

K~ L. Tp. T.LTzo T L .7z
While the result is quite general, it v 1=l "i j=1 7j k=1 "k

is, however, not very useful in practice for

: 3 (c) acceleration error constant K
transfer-characterization. a

If T(0) = 1, then
Why is Ho-Kalman's work quite general
but not quite useful? This paper will in- 9
terpret it by the error constant viewpoint. - 2 _ 1 g 1 h 3
Tl - 15 1L an

=1 z

Classical Viewpoint i j k

It is seen that the steady state error

constants of the system are closely related

T(s) = CT(SI = A)—lb with the locations of poles and zeros in the
= W T B =2 s-plane.

For a control system,

(-1) %K, %, (8-2,). B, (s+2, )
- . Lot s - Rl 7

(
m_(s+p.
i=1 pl)

State-space Interpretation

Instead of expanding into Laurent series,
we expand (3) into Maclaurin's series:

- 1‘\}2

where 2 and h are the number of RHP zeros T(s) CT(SEjé)
and LHP zeros respectively, and n is the N& =3 -2 2 -3

number of poles. Since it is assumed that the = C (~A T=SA "=8"A "~ J.s)b
closed loop system is stable, all its poles o= = = =
must be in the LHP. So P, zj and z, are the Using the distribution law of matrices, we
positive real number. Then the steady state s T il
T(s)=C" (-A

error constants are defined in terms of the )b+g?(-Sé_z)b+CT(—Széj3)E+...(13)



Equating (13) and (8), we obtain the
following equalities:

K

PR L §
1+K = C (-A )b
P
-t = cT(-a"%)p (14)
v
1 _ T, -3
- 4= -2
a

Equations shown in (14) are the state-space
interpretation of error constants.

Consider the following illustrative ex-
ample:

K
=F sl

Y

It can be rewritten into a state diagram as
shown in Fig. 2.

r x x| 7

The state equation description is

k== (g—+ ) x+ T (15)
1 1 .
y = ——x (16)
1
we have
s -

Substituting (17) into (14) yields

B T, -1
=g
P
B MR- T
Tl - (1+K)
o i
T 1+K
Therefore K =K (18)

Similarly, we have

1 _ T,.~2
g = c (A “)B
v
B SKT1
(1+K) 2
and therefore
2
_ _(1+K)
Kv B ST1 (19)

And the acceleration error constant is ob -
tained as follows

2
B T
Ka (1+K)3
Therefore
3 .
Ka = - il%gl__ (20)
T1 K
Conclusion

A state space interpretation of error
constants has been given. Either position,
velocity or acceleration error constants in
the classical sense can be evaluated from
the state space parameters A, B, and C
directly. The approach sheds new light on
performance analysis and reveals more
physical meaning in realization than Ho -
Kalman's original approach.
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