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Abstract

This work reflects contemporary understanding in the modelling of nonlinear
wave processes in weakly dispersive media. The fruitful notion of evolution
equations governing the propagation of single waves is used. Three methods
are described for the construction of nonlinear evolution equations: the
iterative, the asymptotic and the spectral. A comparative analysis of these
methods is presented including the problems of the convergence and correct-
ness. Several physical situations are discussed involving one-dimensional,
weakly inhomogeneous and/or wave-guide systems. The simple evolution
equations are analysed separately.

This book has been written from the viewpoint of graduate students in
wave mechanics and mathematical physics and may also be of interest to post--
graduate students and research workers in those branches of mathematical
physics and engineering that are concerned with nonlinear wave propagation.



Preface to the English edition

Mathematical physics requires good definitions on which mathematical studies
can be based. To us, one of the important notions in wave theory is the
concept of single waves. Starting from this point, we return to the parts
of mathematics in which the notion of evolution equations has played a
significant role in the contemporary understanding on nonlinear waves.

These research notes describe the methods available for constructing the
evolution equations governing nonlinear wave propagation. After introducing
the possible methods together with their comparative analyses, these methods
are then applied to various complicated physical situations. The cases
considered include wave-beams, the description of near-caustic zones, the
elimination of "non-wave"coordinates, etc. The notes are written mainly

on the basis of the research carried on by the authors themselves. Their
scientific interests are related to nonlinear wave propagation, with
applications in hydrodynamics, acoustics, mechanics, biophysics, etc. The
material given in the notes has also been used for teaching at both the
graduate and post-graduate level. =

The authors, whose names are listed in the alphabetical order, share
equal responsibility for these notes.

The translation of the notes was finished when one of the authors (JKE)
was at the University of Newcastle upon Tyne, U.K., supported by a grant
from the SERC. The authors are very much indebted to the SERC and would
like to thank Professor Alan Jeffrey for the help in improving the
presentation of the notes.

JKE, VEF, ENP
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Introduction

Wave propagation theory is historically most closely related to the develop-
ment of approximate methods for solving partial differential and/or integro-
differential equations (systems of equations). However, even in the linear
approach when finite deformations are neglected, the number of exact solutions
describing the dependence of the field variables on the initial conditions
is rather small. These cases, especially when three-dimensional diffraction
problems and waves in dispersive media are considered, represent nowadays
the classical examples of mathematical physics. The number of exactly
solvable nonlinear problems is certainly much smaller. This is the main
reason why approximate methods are so intensely developed for both linear
and nonlinear problems. Generally speaking, the approximate methods used

in the wave propagation theory may be divided into three main groups:

i) the approximate analysis of the exact solution;

ii) the perturbative analysis of the solution with small (slow)
derivation from a known one;

iii) the simplification of mathematical models (equations)
describing the Pprocess.

The methods of group (i) take the exact solution written in the integral
form as a basis, and the approximate solutions are obtained by means of some
classical approximation method, for example, by means of the methods of
stationary phase and steepest descent [114, 116]. The method of stationary
phase, first proposed by Kelvin for solving the wave pattern formation
behind a moving ship is now considered to be a classical one. A great many
linear wave propagation problems may be solved nowadays by means of such an
approach when the integral solutions are known. Unfortunately, it is
practically impossible to get explicit integral formulae for nonlinear
problems and this is a great drawback of this physically well grounded
method.

The methods of the group (ii) are better in this sense because nonlinear



problems are also solvable. The basic solutions are usually taken in the
form of stationary plane waves. First of all, the traditional perturbation
methods belong to this group. The straightforward perturbation procedure
involves a series expansion with respect to a small parameter €, where the
first term is the solution of the problem with € = 0 [73, 112]. The solution
of the "reduced" problem (e = 0) may be found-either exactly or approximately.
The instability of nonlinear waves is usually analysed according to such an
approach. However, as a rule, the straightforward perturbation procedures
break down in the course of time t (or the space coordinate) due to secular
terms which make the solution unbounded as t tends to infinity. These
difficulties can be avoided if the constant parameters of the basic solution,
such as the amplitude and the frequency, for example, are considered to be
sTowly changing in time and in space. This permits the construction of
uniformly valid approximate series (or their finite sums) representing the
solution at a large time. The methods based on such procedures are called
singular perturbation methods [46]. The reader can turn for details to
various works on the topic [2, 20, 35, 44, 108, 116].

The methods of the group (iii) do not simplify the solutions, but rather
the equations governing the wave process. At this stage no attention is
paid to the solutions themselves. It is clear that the simplifying procedure
ought to make use of certain small parameters which may either be present
in the initial equations (systems of equations) or result from the process
(the solution is close to the stationary one, for example). The wave process
is thus described by the solution of the simplified equations [25]. The
best results here are achieved when the initial system is simplified into a
single equation, first order with respect to time and of arbitrary order
with respect to space coordinates. This equation 1is called an evolution
equation. Physically it means that the wave process is separated into single
waves, each of them described by its own equation - an evolution equation.
The best example of such an evolution equation is the well-known Korteweg-de
Vries equation. Its derivation and history form a brilliant chapter in
contemporary mathematical physics [62].

In this book we will be concerned with the methods for constructing non-
Tinear evolution equations mainly in systems with the weak dispersion.
Dispersion, as usual, means the dependence of the phase velocity on the
frequency. In spite of weak dispersion the interaction between the different

2




spectral components may be strong and the wave profiles may be of various
shapes - from quasiharmonic waves up to N-waves and pulse-type waves. In
this case it is rather difficult to fix a definite profile beforehand,
therefore the most appropriate approach involves the simplification of the
initial system without any concrete definition of the wave profile. The
basic idea of simplification may be explained with the simple example of
the linear wave equation

2 2
azg - 2 é_g - : (0.1)
9 X

Its well-known general solution is represented by a super-position of two
waves u and v:

U=u(x -ct) + v(x +ct). (0.2)

Each single wave, for example u, satisfies a simpler equation

qu u _
3€+<;-a.)z-0. (0.3)

This is the simplest "single-wave" equation. Its solution coincides exactly
with the solution of the initial equation (0.1) only when v = 0, i.e. the
wave process contains only one wave. The existence of a single wave is
associated with certain initial and boundary conditions that actually may
often occur in physics. This situation is in fact used in all the methods
of simplification to a considerable extent. We shall demonstrate this
approach on the physical level of strictness in connection with the mode]

equation
CR I TR AP R T (0.4
Sg-cEiy-efmy-2efg=0, -4)
at X X X

where ¢ - 0. Although the solution to the linearized equation (0.4) in the
form of the sinusoidal progressive wavetrains is known [46], we shall not

use it further. Provided ¢ = 0 the solution to the equation (0.4) is given
by expression (0.2), and, if the single wave is realized then U is a function



of one variable y = x - ct only. In case of small €'s the single wave
solution must be given in the form U(x,t) = u(y,t = et). Substitutingy
and T into the equation (0.4) we obtain

2 82u azu 32u2 34u
€-?-2€C—3—T—5—-€——-—2--2€—z-=0. (0.5)
oT Y ay oy et
The lowest-order variation leads to
ou ou 33
c-ﬁ+u-a-+—%=0 (0.6)
y dy

which is the well-known Korteweg-de Vries equation.

As it is seen, the idea of simplification is rather simple itself, although
jts realization for complicated physical situations described by high-order
equations (systems of equations) may be often difficult and cumbersome. In
this connection a vast number of papers has been published in the sixties,
dealing with the derivation of evolution equations in various physical
situations. The mathematical side of these problems was often very similar,
and as a matter of fact, the Korteweg-de Vries equations was often the main
result of these investigations. The unified approach to constructing
evojution equations of the high order was suggested by Taniuti and Wei [106]
and actually marks a certain milestone in the theory. By making use of the
fact that the initial system governing the wave propagation is close to the
hyperbolic system the authors developed an asymptotic procedure in order
to simplify the system. The lowest-order approximation of this procedure
gave the evolution equations. Further investigations by the authors, their
co-workers and others dealt with general expressions for the coefficients
of the evolution equations, with the structure of the evolution equations
depending on the structure of the initial system and higher approximations
etc. Nowadays we have at our disposal a solid basis in order to understand
the physical mechanism of single wave processes and further construction of
evolution equations with the necessary exactness in many interesting problems
of physics.

The existence of single waves is not the only condition used in methods
of simplification. For quasi-one-dimensional waves (elastic waves in rods,
surface waves etc.) the situation involving the transversal structure of the
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field (of a certain mode) is fixed in a large interval of frequency and/or
wave numbers, In this case it is natural to eliminate the transversal
(non-wave) coordinate along which the field structure is fixed. Such an
approach permits a decrease in the number of independent variables. The
best example here is the "classical" derivation of the equations governing
the waves in shallow water [49]. We now give a brief derivation of this
result. As is well known, the movement of an ideal 1iquid is governed by
the equation

prp=0 (-Hsgzsgn) (0.7)

subject to the nonlinear boundary conditions at the free surface

3 _ 30
—3{1 R (0.8)

1 2
%% + 5 ()" +gn =0, (0.9)

and at the bottom (z = -H)

RIg

- 0. : | (0.10)

Here @ is the velocity potential, n(x,y,t) is the displacement of the free
surface, H is the depth of the basin, g is the acceleration of gravity and
A is the Laplacian. '

The difficulties in solving this problem are obvious. Meanwhile from
the solution of the corresponding linear problem (see, for example, [54])
it is known that in the long-wave limit the solution is arranged comparatively
simply: the pressure is hydrostatic, the field of horizontal velocities does
not depend on the depth and the vertical velocity is considerably smaller
than the horizontal velocity. This is true for waves with a wavelength
considerably greater than the depth of the basin. Hence the depth may be
considered as a small parameter. In this case the velocity potential may
be expanded into Taylor series with respect to the depth

@n(x,y,t)(H + )", (0.11)
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By virtue of the condition (0.10) we have oy = 0 and the recurrence formulae

Aan

- - (0.12)
*on+2 (2n + 2)(2n + 1)

=0,

®2n+1

then follow from (0.7). Consequently, the oglg_independent function is oG-
Substituting (0.11) into the boundary conditions (0.8) and (6.9) and taking
(0.12) into account, we obtain the system

9 -] 3 .
B+ ynvey + (H + n)agg - 5 (H + n)7areq =

1 2
= (H + n)"vnuagy + ..., (0.13)

@ 1, 2 (H+n)?
gn+-3F+2-(V¢0) "-—2'—0'—' '3—1:'A<D0=

n ;
= - -(—H—%—'l)—- VogUARY * +ees (0.14)

where the terms containing (H + n) in fourth and higher powers are not
written out. The system (0.13), (0.14) does not include the vertical
coordinate z and derivatives with respect to z. The system is exact
(provided all terms are taken into account) indicating that the elimination
of the nonwave coordinate may be done in principle for a rather general case.
It is clear, however, that the system with an infinite number of terms is
not an essential simplification of the initial system. Nevertheless, if

the depth H is considerably smaller than the wavelength ), i.e. u = HZA'Z <«< 1,
and the amplitude n is smaller than the depth, i.e. ¢ = nH-1 << 1 then
assuming e ~ u, all the terms on the right-hand sides are proportional to 52,
uz, ey Or to higher powers of these parameters. Neglecting these terms

and introducing the particle velocity u = Vey - % HZVA¢0 we obtain, after a
certain transformation, the following system

aﬁ >\
T (uy)d + gvn = 0, (0.15a)
.%+dw{m+nm+%ﬂ3ﬁ}=m (0.15b)



