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Introduction

This volume contains the Proceedings of the 8th International Conference
on Harmonic Analysis and Partial Differential Equations, which took place in
El Escorial, Madrid (Spain) during the week of June 16-20, 2008.

The celebration of this El Escorial 2008 Conference continues a tradition ini-
tiated in 1979 thanks to the leadership and enthusiasm of Professor Miguel de
Guzmaén. The purpose of that first Conference was to bring together the best mathe-
maticians in the field and let them show the progress in the area to a wide audience
of senior and — more importantly — young researchers. The success of El Esco-
rial 1979 Conference, which counted among the main speakers Alberto Calderén,
Ronald Coifman, Yves Meyer and Peter Jones, inspired a group of people in the
Department of Mathematics of the Universidad Auténoma de Madrid to continue
to hold an International Conference with the same aim, (almost) every four years.
From that first Conference of 1979, another seven have been held in 1983, 1987,
1992, 1996, 2000, 2004 and 2008. The El Escorial Conferences have kept growing
in size and impact and are by now a very valuable fixed point on the mathematical
calendar taking place every olympic year.

The format of these Conferences has always been essentially the same, and it
has established a model that counts with general approval within the mathemat-
ical community and has been adopted by many conferences in different fields of
Mathematics. Four outstanding mathematicians in the field of Harmonic Analysis
and Partial Differential Equations are invited to teach one mini-course each. These
mini-courses are intended to present in three or four one-hour sessions the state
of the art in some topic of current interest, assuming minimal background from
the audience and reaching the level of present-day research in such a way as to
be useful for young researchers seeking to join teams doing high quality, original
work. Another important part of the Conference consists of some 15 to 20 invited
one-hour lectures, which can be of a more specialized nature. Finally, a few sessions
of short talks are scheduled to provide an opportunity for those participants who
want to present their latest results.

These Proceedings contain the written versions of two of the four mini-courses
given this time at the Conference, namely, that of Steve Hofmann on “Local T(b)
Theorems and Applications in Partial Differential Equations” and the survey of Car-
los E. Kenig about “The global behavior of solutions to critical nonlinear dispersive
and wave equations”. R. DeVore, who gave a mini-course at El Escorial 2008 on
“The Mathematical Foundations of Compressed Sensing”, has chosen to present
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in these Proceedings his paper on “Instance Optimal Decoding by Thresholding in
Compressed Sensing”, written in collaboration with Albert Cohen and Wolfgang
Dahmen. Also in these Proceedings one can find the contributions of most of the
other invited speakers. The topics of these Contributed Lectures cover a wide range
of areas within Harmonic Analysis and Partial Differential Equations and illustrate
well the fruitful interplay between the two subfields.

The Proceedings of all the El Escorial Conferences have been published in dif-
ferent Mathematical journals of wide circulation. We consider the publication of
the Proceedings an essential part of the Conference, the very final act and the
starting point of the process to prepare the next El Escorial Conference. In this
occasion; we want to thank the American Mathematical Society for its help in
publishing the Proceedings of El Escorial 2008 in its “Contemporary Mathemat-
ics”series. It is also proper to thank the institutions that have helped financially
with the organization of El Escorial 2008, namely, the Spanish Ministries of Educa-
tion and Science, the Universidad Auténoma de Madrid, the Consejo Superior de
Investigaciones Cientificas, the project Consolider I-Math and the Real Sociedad
Matemaética Espafiola. The next El Escorial Conference will be held in 2012.

The Organizing Committee
Madrid, July 2009
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Instance Optimal Decoding by Thresholding in
Compressed Sensing

Albert Cohen, Wolfgang Dahmen, and Ronald DeVore

ABSTRACT. Compressed Sensing seeks to capture a discrete signal x € RN
with a small number n of linear measurements. The information captured
about z from such measurements is given by the vector y = ®x € R™ where ¢
is an n X N matrix. The best matrices, from the viewpoint of capturing sparse
or compressible signals, are generated by random processes, e.g. their entries
are given by i.i.d. Bernoulli or Gaussian random variables. The information y
holds about z is extracted by a decoder A mapping R™ into RY. Typical
decoders are based on ¢;-minimization and greedy pursuit. The present paper
studies the performance of decoders based on thresholding. For quite general
random families of matrices ®, decoders A are constructed which are instance-
optimal in probability by which we mean the following. If z is any vector in RY,
then with high probability applying A to y = ®z gives a vector Z := A(y) such
that ||z — Z|| < Cook(x)e, for all k < an/log N provided a is sufficiently small
(depending on the probability of failure). Here ok ()¢, is the error that results
when z is approximated by the k sparse vector which equals z in its k largest
coordinates and is otherwise zero. It is also shown that results of this type
continue to hold even if the measurement vector y is corrupted by additive
noise: y = ®x+e where e is some noise vector. In this case o (), is replaced

by ok (z)e, + llelle, -

1. Introduction

1.1. Background. The typical paradigm for acquiring a compressed repre-
sentation of a discrete signal z € RN, N large, is to choose an appropriate basis,
compute all of the coefficients of z in this basis, and then retain only the k largest
of these with k < N. Without loss of generality, we can assume that the appro-
priate basis is the canonical Kroenecker delta basis. If S, C {1,..., N} denotes a
set of indices corresponding to k largest entries in z, then zg, is the compressed

2000 Mathematics Subject Classification. 94A12, 65C99, 68P30, 41A25, 15A52.

Key words and phrases. Compressed sensing, best k-term approximation, instance optimal
decoders, thresholding, noisy measurements, random matrices.

This research was supported by the Office of Naval Research Contracts ONR-N00014-08-1-
1113, ONR N00014-05-1-0715; the ARO/DoD Contracts W911NF-05-1-0227 and W911NF-07-1-
0185; the NSF Grant DMS-0810869; the Leibniz-Programme of DFG; and the French-German
PROCOPE contract 11418YB.

(©2010 American Mathematical Society



2 ALBERT COHEN, WOLFGANG DAHMEN, AND RONALD DEVORE

approximation to z. Here and throughout this paper, for a set T' of indices, we
denote by 27 the vector which is identical to £ on T but is zero outside 7.

For any ¢, norm, this approximation process is equivalent to best k-term ap-
proximation. Namely, if

(1.1) Y = {z € RY : #(supp(z)) < k},

where supp(z) is the set of those indices corresponding to the nonzero entries in z,
and if for any norm || - || x on RY, we define

(1.2) or(z)x = Z}Engk lz — 2|l x,

then ||z — zs,|l¢, = llzs¢lle, = ok(z)e,. That is, zs, is a best approximation to
from ¥;. This approximation process should be considered as adaptive since the
indices of those coefficients which are retained vary from one signal to another.

Since, in the end, we retain only k entries of z in the above compression
paradigm, it seems wasteful to initially make N measurements. The theory of
compressed sensing as formulated by Candes, Romberg and Tao [8, 9] and by
Donoho [14], asks whether it is possible to actually make a number n of non-
adaptive linear measurements, with n comparable to k, and still retain the necessary
information about z in order to build a good compressed approximation. These
measurements are represented by a vector

(1.3) y — (Pz',

of dimension n < N where ® is an n x N measurement matrix (called a CS matrix).
To extract the information that the measurement vector y holds about x, one uses
a decoder A which is a mapping from R™ into RY. The vector z* := A(y) = A(®z)
is our approximation to x extracted from the information y. In contrast to ®, the
operator A is allowed to be non-linear.

In recent years, considerable progress has been made in understanding the
performance of various choices of the measurement matrices ® and decoders A.
Although not exclusively, by far most contributions focus on the ability of such
an encoder-decoder pair (®,A) to recover a sparse signal. For example, a typ-
ical theorem says that there are pairs (®,A) such that whenever z € Xy, with
k < an/log(N/k), then z* = z.

From both a theoretical and a practical perspective, it is highly desirable to
have pairs (®, A) that are robust in the sense that they are effective even when
the vector x is not assumed to be sparse. The question arises as to how we should
measure the effectiveness of such an encoder-decoder pair (®,A) for non-sparse
vectors. In [6] we have proposed to measure such performance in a metric || - ||x
by the largest value of k for which

(1.4) lz — A(®z)|x < Coorn(z)x, V&eRY,

with Cy a constant independent of k,n, N. We say that a pair (®, A) which satisfies
property (1.4) is instance-optimal of order k with constant Cy. It was shown that
this measure of performance heavily depends on the norm employed to measure
error. Let us illustrate this by two contrasting results from [6]:

(i) If || - |x is the ¢;-norm, it is possible to build encoding-decoding pairs
(®,A) which are instance-optimal of order k& with a suitable constant
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Cy whenever n > cklog(N/k) provided ¢ and Cy are sufficiently large.
Moreover the decoder A can be taken as

(15) A(y) = argmin ||2l|s,
P2z=y
Therefore, in order to obtain the accuracy of k-term approximation, the
number n of non-adaptive measurements need only exceed the amount &
of adaptive measurements by the small factor clog(N/k). We shall speak
of the range of k which satisfy k < an/log(N/k) as the large range since
it is the largest range of k for which instance-optimality can hold.

(ii) In the case || - ||x is the €>-norm, if (@, A) is any encoding-decoding pair
which is instance-optimal of order kK = 1 with a fixed constant Cy, then
the number of measurement n is always larger than a N where a > 0 de-
pends only on Cy. Therefore, the number of non-adaptive measurements
has to be very large in order to compete with even one single adaptive
measurement.

The matrices ® which have the largest range of instance-optimality for ¢; are
all given by stochastic constructions. Namely, one creates an appropriate random
family ®(w) of n x N matrices on a probability space (2, p) and then shows that
with high probability on the draw, the resulting matrix & = ®(w) will satisfy
instance-optimality for the large range of k. There are no known deterministic
constructions. The situation is even worse in the sense that given an n x N matrix
® there is no simple method for checking its range of instance-optimality.

While the above results show that instance-optimality is not a viable concept
in £y, it turns out that the situation is not as bleak as it seems. For example, a
more optimistic result was established by Candes, Romberg and Tao in [9]. They
show that if n > cklog(N/k) it is possible to build pairs (®,A) such that for all
z eRV,

(16) & — A@2)[e, < CoEE

vk
with the decoder again defined by (1.5). This implies in particular that k-sparse
signals are exactly reconstructed and that signals z in the space weak ¢, (denoted
by wf,) with ||z||we, < M for some p < 1 are reconstructed with accuracy CoMk~*
with s = 1/p —1/2. This bound is of the same order as the best estimate available
on max {0k(x)e, : ||Z|lwe, < M}. Of course, this result still falls short of instance-
optimality in /5 as it must.

The starting point of the present paper is the intriguing fact, that instance-
optimality can be attained in /3 if one accepts a probabilistic statement. A first
result in this direction, obtained by Cormode and Mutukrishnan in [7], shows how
to construct random n x N matrices ®(w) and a decoder A = A(w), w € Q, such
that for any = € RY,

(L.7) lz — A(®z)le, < Cook(x)e,

holds with overwhelming probability (larger than 1 — e(n) where €(n) tends rapidly
to 0 as n — +o00) as long as k < an/(log N)%/? with a suitably small. Note that
this result says that given z, the set of w € Q for which (1.7) fails to hold has small
measure. This set of failure will depend on z.
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From our viewpoint, instance-optimality in probability is the proper formulation
in 5. Indeed, even in the more favorable setting of ¢;, we can never put our hands
on matrices ® which have the large range of instance-optimality. We only know
with high probability on the draw, in certain random constructions, that we can
attain instance-optimality. So the situation in ¢5 is not that much different from
that in 31.

The results in [6] pertaining to instance-optimality in probability asked two
fundamental questions: (i) can we attain instance-optimality for the largest range
of k, i.e. k < an/log(N/k), and (ii) what are the properties of random families
that are needed to attain this performance. We showed that instance-optimality
can be obtained in the probabilistic setting for the largest range of k, i.e. k <
an/log(N/k) using quite general constructions of random matrices. Namely, we
introduced two properties for a random matrix ® which ensure instance-optimality
in the above sense and then showed that these two properties hold for rather general
constructions of random matrices (such as Gaussian and Bernoulli). However, one
shortcoming of the results in [6] is that the decoder used in establishing instance-
optimality was defined by minimizing ||y — ®z||s, over all k-sparse vectors, a task
which cannot be achieved in any reasonable computational time.

1.2. Objectives. In the present paper, we shall be interested in which prac-
tical decoders can be used with a general random family so as to give a sensing
system which has instance-optimality in probability for £; for the largest range of k.
The first result in this direction was given by Wojtasczcek 23] who has shown that
f1-minimization can be used with Gaussian random matrices to attain instance-
optimality for this large range of k. This result was recently generalized in [12] to
arbitrary random families in which the entries of the matrix are generated by inde-
pendent draws of a sub-Gaussian random variable. This result includes Bernoulli
matrices whose entries take the values +1/4/n.

The problem of decoding in compressed sensing, as well as for more general
inverse problems, is a very active area of research. In addition to ¢;-minimization
and its efficient implementation, several alternatives have been suggested as being
possibly more efficient. These include decoding based on greedy procedures such
as Orthogonal Matching Pursuit (OMP) (see [15, 19, 20, 21]) as well as decoding
through weighted least squares [11]. Some of the pertinent issues in analyzing a
decoding method is the efficiency of the method (number of computations) and the
required storage needed.

Concerning efficiency, Gilbert and Tropp [15] have proposed to use a greedy
procedure, known as Orthogonal Matching Pursuit (OMP) algorithm, in order to
define A(y). The greedy algorithm identifies a set of A of column indices which can
be used to decode y. Taking zero as an initial guess, successive approximations to
y are formed by orthogonally projecting the measurement vector y onto the span
of certain incrementally selected columns ¢; of ®. In each step, the current set
of columns is expanded by one further column that maximizes the modulus of the
inner product with the current residual. The following striking result was proved
in [15] for a probabilistic setting for general random matrices which include the
Bernoulli and Gaussian families: if n > cklog N with c sufficiently large, then for
any k sparse vector z, the OMP algorithm returns exactly z* = z after k iterations,
with probability greater than 1 — N~° where b can be made arbitrarily large by
taking c large enough.
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Decoders like OMP are of high interest because of their efficiency. The above
result of Gilbert and Tropp remains as the only general statement about OMP
in the probabilistic setting. A significant breakthrough on decoding using greedy
pursuit was given in the paper of Needell and Vershynin [19] (see also their fol-
lowup [20]) where they showed the advantage of adjoining a batch of coordinates
at each iteration rather than just one coordinate as in OMP. They show that such
algorithms can deterministically capture sparse vectors for a slightly smaller range
than the large range of k.

The present paper examines decoders based on thresholding and asks whether
such algorithms can be used as decoders to yield ¢, instance-optimality in probabil-
ity for general families of random matrices. We will describe in Section 6 a greedy
thresholding scheme, referred to as SThresh, and prove that it gives instance-
optimality in probability in £; for the large range of k. This algorithm adds a batch
of coordinates at each iteration and then uses a thinning procedure to possibly
remove some of them at later iterations. Conceptually, one thinks in terms of a
bucket holding all of the coordinates to be used in the construction of z. In the
analysis of such algorithms it is important to not allow more than a multiple of &
coordinates to gather in the bucket. The thinning is used for this purpose.

While preparing this paper, we became aware of the work of Needell and Tropp
[21] in which they develop a deterministic algorithm (called COSAMP) which has
features similar to ours. In fact, we have employed some of the ideas of that paper in
our analysis. This will be discussed in more detail after we give a precise description
of our algorithm.

While the benchmark of instance-optimality covers the case of an input signal =
which is a perturbation of a sparse signal, it is not quite appropriate for dealing with
possible noise in the measurements. By this we mean that instead of measuring
®z, our measurement vector y is of the form

(1.8) y=%oz +e,

with e € R™ a noise vector. SThresh will also perform well in this noisy setting.
Stability under noisy measurements has been also established for COSAMP ([21])
as well as for schemes based on ¢;-regularization [9]. While this latter strategy
requires a-priori knowledge about the noise level, this is not the case for COSAMP
and the schemes developed in this paper.

A brief overview of our paper is the following. In the next section, we introduce
the probabilistic properties we will require of our random families. In §3, we intro-
duce a deterministic algorithm based on thresholding and analyze its performance.
This algorithm is then used as a basic step in the greedy decoding algorithm for
stochastic families in §4. In this section, we prove that the stochastic decoding
algorithm gives instance optimality in probability. As we have noted above, a key
step in this decoding is a thinning of the indices placed into the bucket. It is an
intriguing question whether this thinning is actually necessary. This leads us to
consider an algorithm without thinning. We introduce such an algorithm in §6 and
we show in §7 that almost gives instance-optimality in probability for ¢ for the
large range of k. The results for that algorithm are weaker than the thinning algo-
rithms in two ways. First they require the addition of a small term € to o (z)e, and
secondly the range of k is slightly smaller than the large range. Finally, we append
in §8 the proof that random matrices whose columns are uniformly distributed vec-
tors on the unit sphere satisfy the properties which are used in the analysis of both



6 ALBERT COHEN, WOLFGANG DAHMEN, AND RONALD DEVORE

algorithms. These properties are known to hold for matrices whose entries are i.i.d.
draws from Gaussian or Bernoulli random variables.

While a lot of progress has been made on understanding the performance of
greedy algorithms for decoding in compressed sensing, there remain fundamental
unsettled questions. The most prominent is whether the original OMP algorithm
can indeed give instance optimality in probability for £; for the large range of k.

2. The Setting

As we have already mentioned, one of our goals is to derive results that hold
for general random families. In this section, we state general properties of random
families which will be used as assumptions in our theorems.

We consider random n x N matrices & = ®(w), on a probability space (€, p).
We denote the entries in ® by ¢;;, 1 < i <n, 1< j < N and denote the j-th
column of ® by ¢;, j = 1,...,N. One of the main properties needed of random
families for compressed sensing is that given any € RY, with high probability ®z
has norm comparable to that of . We formulate this in

P1: For any € RY and § > 0, there is a set 2;(z,d) C Q such that

(2.1) ®z)2, - [lzlZ | < dl|zll2,, w € (,d),
and
(2.2) p(95(x,8)) < bre~ ™"

where b; and ¢; are absolute constants.

An important consequence of property P1, often used in compressed sensing,
is the following Restricted Isometry Property (RIP), as formulated by Candes and
Tao [8]:

RIP(k,n): Annx N matriz ®q is said to satisfy the Restricted Isometry Property
of order m with constant n € (0,1), if

(2:3) 1 =nllz]? < |Bozl* < (1 + )], = € .

It was shown in [3] that P1 implies RIP. More precisely, their analysis gives
the following fact.

PROPOSITION 2.1. Whenever the random family & = {® = ®(w) : w € Q}
of n x N matrices satisfies P1, then for each n € (0,1) there ezxists a subset
Qo(m,n, ®) C Q with

c1n 2
(2.4) p(Qo(m, na(b)c) < ble——l——4" +m[log(eN/m)+log(12/n)]

where by, c1 are the constants from P1, such that for each draw w € Qq(m,n, P)
the matriz ®(w) € ® satisfies RIP(m,n) (order m with constant n). In particular,
given 1, if a is chosen suitably small (depending on n) then with high probability ®
will satisfy RIP(m,n) as long as m < an/log(N/m), i.e for the large range of m.
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3. A deterministic thresholding algorithm

In this section, we shall introduce a deterministic thresholding algorithm. Later,
we shall embed this algorithm into the probabilistic setting and show that the cor-
responding probabilistic algorithm has ¢, instance optimality in probability.

We continue to denote by k the envisaged range of instance optimality. We shall
assume throughout this section that @ is an n x N compressed sensing matrix that
satisfies the RIP(m,n) where m > 3k is an integer which will be specified later.
For the validity of the theorems that follow, there will also be a restriction that 7
is sufficiently close to 0.

3.1. Description of the thresholding algorithm and main result. In this
section, we shall describe our thresholding algorithm. The algorithm starts with
an input vector y € R™ and generates a set A of at most k indices. The input
vector y is either y = ®z in the noiseless case or y = ®x + e in the presence of
noise e in the measurements. The output of the algorithm is a vector z* which is
an approximation to x determined by the noisy information y.

We now describe our thresholding algorithm for decoding an input vector
v € R™ of either type:

DThresh[v, k, 8] — z*

(i) Fix a thresholding parameter § > 0. Choose the sparsity index k, let
r0:=wv, 2% := 0, and set j =0, Ag = Ag = 0.
(i) If j = k stop and set z* := z7.
(iii) Given A; calculate the residual 7 := v — ®z7 for the input vector v and
define

By = € (L ) [0 > 22Dy

If Aj11 = 0, stop and output A* = A; and z* := /.
Otherwise se}; Aj+1 = Aj U Aj+1.
(iv) Compute (A1) (according to (5.13)) as

5:([1]'+1) = argminsupp(z)gl-\j+1 ”Qz - ’U”,
and define A;, as the set of indices v € I_Xj+1 corresponding to the k

largest (in absolute value) entries in #(A;41). Let 2741 := &(A;41)a
j+1— j and return to (ii).

i+1)

Step (iv) is a thinning step which prevents the bucket of indices to get too
large so that in our analysis RIP(n,m) will turn out to remain applicable for a
fixed suitable multiple m of k.

Perhaps a few remarks concerning a comparison with COSAMP are in order.
In both schemes any a priori knowledge about the noise level is not needed but
the envisaged sparsity range k appears as a parameter in the scheme. This is in
contrast to ¢;-regularization in [9] which, however, does seem to require a priori
knowledge about the noise level. Of course, one can take k as the largest value for
which the scheme can be shown to perform well. The subsequent analysis will show
that this is indeed the case for the maximal range.
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While DThresh as well as COSAMP are based on thresholding, COSAMP
from the very beginning always works with least squares projections of size 2k. In
the above scheme the sets of active indices A; are allowed to grow and, in fact, the
scheme may terminate before they ever reach size k.

The following theorem summarizes the convergence properties of DThresh.

THEOREM 3.1. Assume that §,n < 1/32 and that the matriz @ satisfies RIP(m,n)
with m > [k(1 + 2—27)1 Then for any x € RN and y = ®z + e the output * of
DThresh[y, k, 8] has the following properties:

(i) If in addition x € i, then the output z* satisfies

(3.1) llz — *|| < 90]le]l.

(ii) If z € RN and zs, is its best approzimation from Zk, i.e. the indices in
Sk identify the k largest terms (in absolute value) in x, then

(3:2) e — 2|l < 90[|@(z — z5,)ll + lell].
(iii) For arbitrary x € RN, one has
. Uk(-"?)ef'
(3.3) Iz~ < 90((1+m)/2(= 725 +on(@)ey ) + llel)-

We postpone the proof of Theorem 3.1 to §5 and explain first its ramifications
in the stochastic setting.

4. Thresholding in the stochastic setting

Let us now assume that ® = {®(w) : w € Q} is a random family of matrices
which satisfy P1. As we have shown in Proposition 2.1, with high probability on
the draw (see (2.4)), ®(w) will satisfy RIP(m,n), m a fixed multiple of k, for the
large range of k, with constant a depending on that multiple and on 1. We shall
use the following stochastic version SThresh of the thresholding algorithm which
differs from DThresh only in the initialization step (i).

SThresh[v, k, §] — z*

(i) Fix a thresholding parameter § > 0 and the sparsity index k. Given any
signal z € RY take a random draw ® = ®(w) and consider as input the
measurement vector v = ®z + e € R™ where e is a noise vector. Let
9 :=v, and set j =0, Ag = Ag = 0.

(ii) If j = k stop and set z* := z7.

(ili) Given A; calculate the residual r/ := v — ®27 for the input vector v and
define
% . j 8l
Aj+1 = {7' € {171N} : |<T]7¢i>' > W}
If Aj41 = 0, stop and output A* = A; and z* := 7.
Otherwise set Ajt1:=AjUAj41.
(iv) Compute £(Aj41) (according to (5.13)) as
i’(Aj-i'l) = argminsupp(z)gl_\]url ||‘~I)Z - v”v
and define Ajy; as the set of indices v € Aj;; corresponding to the k
largest (in absolute value) entries in £(A;;1). Let 2% := #(Aj41)a,,,,
j+1— j and return to (ii).



INSTANCE OPTIMAL DECODING BY THRESHOLDING IN COMPRESSED SENSING 9

Notice that the output z* = z*(w) is stochastic. From the analysis of the
previous section, we can deduce the following theorem.

THEOREM 4.1. Assume that § < 1/63 in SThresh and that the family ® of
stochastic matrices ®(w) has property P1. Then, for any x € RN there exists a
subset Q(z) of Q with

(4.1) p(Qz)°) < 2bye~ /863"
such that for any w € Q(x) and measurements of the form y = ®(w)x + e, with

e € R™ a noise vector, the output * of SThresh|y, d, k] satisfies
(4.2) |z — z*|| < Cor(x) +90|le|, &k < an/log(N/n),
with C < 92 and a depending only on 6,c1 and the bound on n.

In particular, when e = 0 this algorithm is instance-optimal in probability in €y
for the large range of k.

Proof: Fixing n = 1/63 and m = [(1 + %)k] we know by Proposition 2.1
that there exists a set o C Q such that for w € g the matrix & = ®(w) satisfies
RIP(m,1/63) and

(4.3) p(96) < ble—fgg+m[log 756+]og(eN/m)].

Thus, as long as N > 756m/e it suffices to have 2mlog(eN/m) < c1n/8 - 632, to
ensure that

(4.4) p(Q) < bie 547, whenever k< an/log(N/k)
provided a is sufficiently large. Thus, we infer from Theorem 3.1 (ii) that
(4.5) oz — 2*[| < 90(||(z — zs,)[| + llell)

holds for every w € 9. Now, by Property P1, there exists a subset (2 (z§, ,1/63)
with complement

p(Q(a§,,1/63)°) < bre™rn/6%",
such that ||®(z — x5, )| < 1.013|jz — z, || which ensures the validity of (4.2) with
Q(z) :=QN Ql(a:‘g';k, 1/63). O

5. Proof of Theorem 3.1
We begin by collecting a few prerequisites.

5.1. Consequences of RIP. Let us first record some simple results that
follow from the RIP(m,n) assumption. Most of the results we state in this sub-
section can be found in [19] but we include their simple proofs for completeness of
the present paper.

LEMMA 5.1. For any I C {1,..., N} with #(I) < m we have
(5.1) 2711 = 187]1* < (1 +n).

Proof: The equality in (5.1) holds because the norm of a matrix and its con-
jugate transpose are identical (this follows for example from the fact that ||A|| =
SUP|g||=1, |ly[l=1 ytAz). The upper inequality follows from the RIP(m,n) assumption
because for any z € R", supported in I one has ||®;z| = ||®z;|| < (14+n)/2|z;|| =
(1 +n0)?2. o



