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Preface

Reinforcing brittle matrices to improve their mechanical properties
is an age-old concept. However, the modern development of fiber-
reinforced cement composites dates back only to the 1960s. In the
beginning, only straight steel fibers were used. The acceptance of fiber-
reinforced concrete by the construction industry has led to a number of
developments. Among these developments are new fiber types made of
steel, stainless steel, polymeric and mineral materials, and naturally
occurring materials. New manufacturing techniques and applications
have also been developed. A large number of researchers around the
world have investigated the various aspects of fiber-reinforced compos-
ites [FRC].

The primary purpose of this book is to introduce the reader to vari-
ous portland cement—based fiber composites and to provide information
on their constituent materials, fabrication, mechanical and long-term
properties, applications, and field performance. The book is geared
toward advanced undergraduate and graduate students, profes-
sional engineers, field engineers, fiber manufacturers, precast fiber-
reinforced structural and nonstructural component manufacturers,
and engineers involved with user agencies such as various depart-
ments of transportation. The book can be used as a reference text for
fiber-reinforced composites.

The chapters in the book are conveniently arranged for readers
with varied interests. For example, readers interested in glass fiber—
reinforced composites can concentrate on the first few chapters, dealing
with various mechanical properties, and on Chapter 13, dealing with
the fabrication, properties, and applications of glass fiber—reinforced
composites.

Chapter 1 provides a historical development of fiber-reinforced ce-
+ient composites and the various types of composites that are currently
used. This chapter also provides information on the various profes-

nal and research organizations that periodically update the state of
the art.

xiii
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Chapters 2, 3, and 4 cover the basic concepts and are geared toward
graduate students. These chapters deal with the latest testing and
modeling developments and with promising research directions. These
chapters are also useful for design professionals who are interested in
the basic concepts.

Chapters 5 through 11 deal with conventional fiber-reinforced con-
crete. The majority of applications involve the use of either steel or
polymeric fibers. The chapters cover the designing of mixes and the
properties of plastic (fresh) and hardened concrete. Matrix composi-
tions and fiber contents normally used in the field are covered in these
chapters. Typically, the matrix contains coarse aggregate and the fiber
volume fraction is less than 2 percent. Although these chapters are
written mainly for professionals involved in FRC use, students will
greatly benefit by learning about real-life situations.

Chapter 12 deals with the shotcreting method of construction using
FRC. A great deal of practical applications have been devised in this
area for tunnel and canal linings and for the lining of waste dispoal
sites. Both steel and polymeric fibers have been used. The use of the
shotcreting technique, special requirements for mix proportions, addi-
tives such as silica fume and high-range water-reducing admixtures,
and plastic and drying shrinkages are covered in this chapter.

Chapter 13 specifically deals with the use of glass fibers. This is a
growing industry, with more than $100 million in sales per year in
the United States alone. Constituent materials, construction methods,
and problems with long-term durability that are unique to glass fiber—
reinforced concrete (GFRC) are discussed in this chapter.

Chapter 14, which deals with other thin-sheet products, includes
the composites developed primarily to replace asbestos fiber—reinforced
sheets. This is also a growing field worldwide. Products included in this
chapter are thin sheets reinforced with polymeric fabrics and meshes
and with short fibers (pulps) including wood fiber—reinforced products.
The recent developments in the area of polymeric pulp and the ad-
vances made to improve the performance of wooden fibers are also
discussed in this chapter.

The chapter on slurry-infiltrated fiber concrete (SIFCON) deals with
composites with high volume fractions of fibers. These composties have
some unique properties and applications for blast-resisting structures.

Chapter 16, dealing with the use of FRC in structural compo-
nents, provides details for designing beams, columns, and slabs. Fiber-
reinforced concrete was found to provide notable improvements in the
area of shear, ductility under cyclic loading, and impact and fatigue
loading. It shows good potential for earthquake-resistant structures
because of the ductility it provides compared to plain concrete. Re-
inforcement congestion can also be reduced by using FRC and less



Preface XV

continuous reinforcement in the junctions of beams and columns and
other critical locations.

The chapter on field performance and case studies provides examples
of real-life applications and the performance of FRCs in the field.

The authors would like to add the following note for the readers.
Selecting a system of units of measure for the text, either the met-
ric system or the U.S. and avoirdupois systems, was a problem. After
considerable thought we decided to use the units that were used in
the publications from which the information was taken. This decision
led to the use of both systems. Conversions are provided so that the
reader can have a feel for the dimensions. We would like to mention
that the conversions are not as accurate (say, to three digits) and also
not as complete as we would like them to be. We had to choose between
clarity (readability) and accuracy and we choose the clarity, since the
readers can always obtain an accurate conversion if they need one. A
complete conversion table is provided at the end of the text.

We would also like to inform the readers that the tables and figures
are not exactly the same as those presented in the sources cited. They
were modified to improve the clarity. Some of the illustrations were
taken from the original reports rather than the references mentioned.
Since the reports are difficult to obtain, the published papers are used
for references.

P. Balaguru
Surendra P Shah
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Chapter

Introduction

The use of randomly oriented, short fibers to improve the physical
properties of a matrix is an age-old concept. For example, fibers made
of straw or horsehair have been used to improve the properties of
bricks for thousands of years. In modern times, fiber-reinforced com-
posites are being used for a large variety of applications. The composite
could be a clay brick reinforced with natural fibers or a high-strength,
fiber-reinforced ceramic component used in space shuttles. This book
deals with the fiber-reinforced composites made with primarily port-
land cement-based matrices. These matrices can consist of any of the
following:

1. Plain portland cement

2. Cement with additives such as fly ash or condensed silica fume

3. Cement mortar containing cement and fine aggregate

4. Concrete containing cement, fine and coarse aggregates

In certain applications, the matrix may also contain admixtures and

polymers. Composites containing non-portland cement-based matrices,

which are primarily used for rapid repairs, are also briefly discussed.
The fibers can be broadly classified as

1. Metallic fibers

2. Polymeric fibers

3. Mineral fibers

4. Naturally occurring fibers

Metallic fibers are made of either steel or stainless steel. The poly-
meric fibers in use include acrylic, aramid, carbon, nylon, polyester,



