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PREFACE

This is the second edition of a textbook that is intended for a senior or graduate-level
course in an electrical engineering (EE) curriculum on the subject of the analysis of
multiconductor transmission lines (MTLs). It will also serve as a useful reference
for industry professionals. The term MTL typically refers to a set of n + 1 parallel
conductors that serve to transmit electrical signals between two or more points, for
example, a source and a load. The dominant mode of propagation on an MTL is the
transverse electromagnetic (TEM) mode of propagation, where the electric and mag-
netic fields surrounding the conductors lie solely in the transverse plane orthogonal
to the line axis. This structure is capable of guiding waves whose frequencies range
from dc to where the line cross-sectional dimensions become a significant fraction
of a wavelength. At higher frequencies, higher order modes coexist with the TEM
mode, and other guiding structures such as waveguides and antennas are more prac-
tical structures for transmitting the signal between a source and a load. There are
many applications for this wave-guiding structure. High-voltage power transmission
lines are intended to transmit 60-Hz sinusoidal waveforms and the resulting power. In
addition to this low-frequency power signal, there may exist other higher frequency
components of the transmitted signal such as when a fault occurs on the line or a circuit
breaker opens and recloses. The waveforms on the line associated with these events
have high-frequency spectral content. Cables in modern electronic systems such as
aircraft, ships, and vehicles serve to transmit power as well as signals throughout the
system. These cables consist of a large number of individual wires that are packed into
bundles for neatness and space conservation. The electromagnetic fields surrounding
these closely spaced individual wires interact with each other and induce signals in
all the other adjacent circuits. This is unintended and is referred to as crosstalk. This
crosstalk can cause functional degradation of the circuits at the ends of the cable. The
prediction of crosstalk will be one of the major objectives in this text.

There are numerous other similar transmission-line structures. A printed circuit
board (PCB) consists of a planar dielectric board on which rectangular cross-section
conductors (lands) serve to interconnect digital devices as well as analog devices.
Crosstalk can be a significant functional problem with these PCBs as can the degra-

xvii
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dation of the intended signal transmission through attenuation, time delay, and other
effects. Signal degradation, time delay, and crosstalk can create significant functional
problems in today’s high-speed digital circuits so that it is important to understand and
predict this eftect. Digital systems constitute the primary type of electronic system
today and will no doubt dominate in the future. Clock speeds and data transfer rates
are accelerating at an astounding rate. Personal computers today have clock speeds
on the order of 3GHz. The spectral content of these high-speed digital waveforms
extends well into the lower GHz frequency range. This means that crosstalk as well
as unintended radiated emissions are presenting performance problems in digital
systems that were unheard of a decade ago. This will no doubt increase in the future.
As recent as 15 years ago, many of the signal connection conductors such as wires
and PCB lands were electrically short enough at the highest significant frequency of
the digital signals that the effect of those interconnection conductors could generally
be ignored. Today, most of the PCB lands must be treated as a transmission line, and
the matching of those lines is no longer an option in the design of a digital system.
Distributed-parameter properties of these conductors can no longer be ignored.
Hence, there is a growing need for digital design engineers to be able to understand
the concepts and design principles of a transmission line. The objective of this text
is to examine various methods for solving the transmission-line equations for mul-
ticonductor lines as well as to develop an understanding of the general properties of
wave propagation on the lines.

The analysis of transmission lines consisting of two parallel conductors of uniform
cross section has traditionally been a fundamental subject in electrical engineering.
Prior to the introduction of digital computer engineering topics into the undergrad-
uate EE curricula, all EE undergraduates were required to complete a course on
two-conductor transmission lines. However, because of the introduction of computer
engineering courses into an already crowded 4-year undergraduate degree program,
the transmission-line course(s) in many EE programs has been relegated to a senior
technical elective if offered at all. Unfortunately, the increasing use of high-speed
digital technology requires that all EEs must have a working knowledge of trans-
mission lines. In addition, the use of MTLs consisting of more than two conductors
is becoming more widespread because of the increasing need for high-volume and
high-speed data and signal transmission. Signal integrity (the effect of the transmis-
sion line on the signal transmission) is becoming a critical aspect of high-speed digital
system performance. This text is intended to fill the need for a structured course on
transmission lines in an EE program.

This text is the second edition of a previous text concerning the analysis of MTLs.
The text has undergone a significant reorganization with the emphasis given toward
a university textbook for a senior/graduate textbook on transmission lines. In the first
edition the two-conductor and MTL discussions were combined into a single chapter.
In this second edition, each broad analysis topic, for example, per-unit-length param-
eters, frequency-domain analysis, time-domain analysis, and incident field excitation,
now has a chapter concerning two-conductor lines followed immediately by a chap-
ter on MTLs for that topic. This allows the instructor to choose his or her emphasis
either on two-conductor lines or on MTLs, or on both. This organization also makes



PREFACE xix

it easier for the reader to understand the analysis of MTLs. The analysis of MTLs
is very similar to that of two-conductor lines except that the detail is considerably
increased. However, with the aid of matrix symbology and techniques, most of the
MTL topics are straightforward extensions of the corresponding two-conductor line
topics. Hence, by devoting a separate chapter to each two-conductor line topic and
then following that with a chapter on the corresponding MTL topic, the MTL material
can be more readily understood.

In addition to this significant reorganization of the material, the text now contains
important developments in analysis methods that have been developed in the inter-
vening 13 years since the first edition was published. Digital technology has virtually
taken over the field of electronics. The clock and data speeds in those digital systems
have accelerated at an astonishing rate, meaning that the spectral content of those
signals that are propagating along the interconnect lands now extends into and, in
some high-end servers, above the 20-GHz region. This has caused most of the sig-
nal interconnects in those systems, which were inconsequential from a standpoint of
transmission-line effects 13 years ago, to now become critical to the functionality of
those systems. The transmission-line behavior of those interconnects can no longer be
ignored. In addition, the number and density of those interconnects have increased dra-
matically so that the analysis of their effects is now a serious computational problem.
Hence, the current emphasis is on the development of macromodels and on “model
order reduction” or (MOR) for the time-domain analysis of these high-density in-
terconnects. Generation of macromodels that compactly describe these interconnects
from a port standpoint requires the determination of the transfer functions representing
those interconnects. Typical distributed-parameter interconnects have an enormous
number of poles such that the transfer functions are ratios of very high order polyno-
mials in the Laplace transform variable s. The current analysis methods focus on MOR
methods that seek to determine a highly reduced number of dominant poles of those
transfer functions, thereby simplifying the analysis. MOR methods such as recursive
convolution, complex frequency hopping (CFH), Pade, asymptotic waveform expan-
sion (AWE), and vector fitting (VF) as well as the synthesis of lumped-circuit models
are the current methods of choice. Chapters 8 and 9 , which cover the time-domain
analysis of two-conductor lines and MTLs, respectively, have been considerably ex-
panded to now include those topics among many others that have been developed in
the intervening years.

The second edition of this text is now divided into 13 chapters, whereas the first
edition only had eight chapters. Considerable thought has gone into the reorganization
of the text. The author is of the strong opinion that organization of subject material
into a logical and well thought-out form is perhaps the most important pedagogical
technique in a reader’s learning process. This logical organization is one of the im-
portant attributes of the text. Chapter 1 discusses the background and rationale for the
use of MTLs. The general properties of the TEM mode of propagation are discussed,
and the transmission-line equations are derived for two-conductor lines using several
methods. The various classifications of MTLs (uniform, lossless, and homogeneous
medium) are discussed along with the restrictions on the use of the TEM model. An
important addition to this chapter has been made in the second edition: the discussion
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of the time domain versus the frequency domain. This is a crucial aspect of any EE’s
ability to design electronic systems. The chapter presents a very useful method for the
time-domain analysis of a linear system such as an MTL having linear terminations
by computing the frequency-domain transfer function, decomposing the periodic or
nonperiodic input signal into its Fourier spectral components, passing those through
the system, and recombining in time at the output. This allows a straightforward
incorporation of frequency-dependent losses of the conductors and the surrounding
medium. These frequency-dependent losses complicate, as we will see, the direct
time-domain solution of the transmission-line equations.

Chapter 2 provides a derivation of the two-conductor transmission-line equations
along with the general properties of the per-unit-length parameters in those equations.
Chapter 3 discusses these topics for MTLs.

Chapter 4 discusses the derivation of the per-unit-length parameters of inductance,
capacitance, resistance, and conductance for two-conductor lines, whereas Chapter 5
repeats this for MTLs. In both chapters, numerical methods for the determination of
these important per-unit-length parameters are discussed in detail.

Chapter 6 discusses the frequency-domain solution of the transmission-line equa-
tions, and Chapter 7 repeats this for MTLs. The discussion of two-conductor transmis-
sion lines in Chapter 6 has been expanded considerably over the first edition coverage
and now constitutes a traditional undergraduate coverage.

Chapter 8 discusses the time-domain analysis of two-conductor lines, and Chapter
9 repeats this for MTLs. Again, the time-domain solution for two-conductor lines in
Chapter 8 is considerably expanded over the first edition coverage and now constitutes
a traditional undergraduate coverage. In addition, Chapter 8 now includes an extensive
discussion of methods for achieving signal integrity (SI) in high-speed digital inter-
connects. The finite-difference, time-domain (FDTD) solution method is developed
as is the time-domain to frequency-domain transformation (TDFD) method. Both of
these allow the inclusion of frequency-dependent losses. Detailed discussions of re-
cursive convolution and MOR techniques such as Pade methods are now included in
Chapter 8 . Chapter 9 on the time-domain analysis of MTLs now includes extensive
discussion of MOR methods such as the generalized method of characteristics, Pade
methods, asymptotic waveform expansion, complex frequency hopping, and vector
fitting. In addition, Chapter 9 now includes the development of the FDTD method for
dynamic terminations.

Chapter 10 gives the symbolic or literal solution of perhaps the only MTL that
admits a closed-form solution in terms of symbols: a three-conductor lossless line
in a homogeneous medium. This chapter is virtually the same as in the first edition
although it has been revised.

Chapter 11 gives the frequency-domain and time-domain solutions for two-
conductor lines with incident field illumination. Chapter 12 repeats that for MTLs.
The emphasis is on uniform plane-wave excitation as from a distant antenna or a
lightning stroke.

Finally, Chapter 13 discusses the analysis of interconnected transmission-line net-
works such as branched cables. There is not enough difference between the methods
for two-conductor lines and MTLs to warrant splitting this chapter into two chapters.
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Appendix A contains the descriptions of numerous FORTRAN computer codes
that implement all the techniques in this text. Numerous experimental results are
included in this text ranging from cables to PCBs in order to illustrate real-
world problems. These codes are used to provide the predictions for these ex-
perimental results. The codes can be downloaded from the Wiley ftp site at
ftp:\\ftp.wiley.com/public/sci_tech_med/multiconductor_transmission/.

Appendix B is new to this edition and contains a brief but thorough tutorial on the
SPICE/PSPICE circuit analysis program.

Many of the author’s colleagues have contributed substantially to the advancement
of this subject. Professors Antonio Orlandi and Frederick M. Tesche along with the
late Albert A. Smith Jr. are among those to whom the author owes a debt of gratitude
for many insightful discussions on this subject.

Clayton R. Paul
Macon, Georgia
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