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preface

This second edition reflects suggestions from several reviews, dozens of inter-
views, and hundreds of questionnaires. Everybody wanted more linear ICs and
less discrete material. Also asked for were chapter summaries, more FET applica-
tions, thyristors, optoelectronics, etc. To strengthen and modernize the book,
therefore, I have added:

1. A chapter on op-amp applications covering comparators, amplifiers, active
diode circuits, integrators, VCOs, and active filters.

2. A chapter on voltage regulators, emphasizing the new breed of three-terminal
IC regulators.

3. Self-testing reviews at the end of each chapter, designed to get reader
participation.

4. More linear IC material throughout the book, emphasizing circuit designs
extensively used in linear ICs.

5. Earlier coverage of zener diodes and simple regulators.
6. Material on thyristors and optoelectronic devices.

To make room for all this new material, I shortened almost every chapter
in the original edition, rewriting some chapters completely and revising others
heavily. Where possible, I simplified the mathematics and emphasized the logical
approach. The result is a faster moving book that gets you through discretes
and into ICs as soon as possible.

Here are some specific changes. Chapters 4 and 5 now include a discussion
of zener diodes and regulators. I simplified the mathematical derivations in
Chap. 7 (biasing) and introduced the dc load line as a visual aid. Chapter 9
now has new sections on RC coupling, direct coupling, and other types of inter-
stage coupling. In Chap. 10, I added material on thermal resistances, transistor
derating, and heat sinking. Chapter 11 discusses the current mirror, a potent
circuit used extensively in linear ICs. Also important, Chaps. 7 through 11 now
contain multistage amplifiers showing how the CE, CC, and CB connections
are used. Chapter 14 now has all kinds of FET applications. In Chap. 15, I
expanded the discussion of h parameters, showing how to convert h values on
data sheets into r parameters. Chapter 17 analyzes the internal circuitry of typical
op amps and audio ICs; this not only reinforces earlier learning, it allows me
to explain fully slew rate and power bandwidth, the two most important large-
signal concepts in linear ICs. Chapter 19 now includes direct-coupled positive-
feedback circuits like four-layer diodes, SCRs, and UJTs. I made Chaps. 20
and 21 completely new because of the demand for op-amp applications and
IC regulators. Finally, Chap. 23 now contains a section on the phase-locked
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loop. Besides the foregoing, I made many other minor additions and deletions
throughout the book.

As before, this is a book for a student taking a first course in linear electronics.
The ideal prerequisites are a dc-ac course, algebra, and trigonometry. In some
schools, it may be possible to take the ac and trigonometry courses concurrently.
As in the first edition, the important equations have a triple asterisk *** attached
to them. Other study aids include self-testing reviews and problems. Also note,
a correlated laboratory manual Experiments for Electronic Principles is available.

If you liked the first edition of this book, I'm sure you will like this new
edition even better. It accurately reflects the industrial use of discretes and
ICs, retaining enough discrete discussion to lay a solid foundation and introduc-
ing enough IC material to get in step with industry. Best of all, this new edition
is easier to teach from and easier to read.

I want to acknowledge those who helped me most with this second edition.
Thanks to my reviewers, Hank Dinter of Hennepin County Area Vocational-
Technical Center, Douglas V. Hall of Hall Electronics Consultants, and Thomas
P. Herbert of the University of Akron. And thanks to my colleagues, Raymond
P. Dong, F. Hilsenrath, A. Jensen, and William E. Long of Foothill College;
Albert Camps and Lorne MacDonald of the College of San Mateo; Kenneth
Muchow and Charles Wojslaw of San Jose City College; Joseph T. Livingstone
of West Valley College; and Francis S. Horton of Southeastern Community
College.

Albert Paul Malvino
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This chapter is about idealization and approximation, Ways to simplify analysis.
Included are common approximations for resistors, capacitors, and inductors.

tdealization

Most electronic devices are complicated. To get to the main ideas, we often
idealize; this means stripping away all unnecessary detail. The device that remains
is then ideal or perfect.

need for idealization

You have used idealization many times already. A good example is a piece of
wire. In most cases, you treat it as a perfect conductor; but this is far from
the truth. Take a piece of copper wire 1 ft long as shown in Fig. 1-1a. If it is
AWG 22, this piece of wire has a resistance of 0.016 © and an inductance of
0.24 pH. If the wire is 1 in above a metallic plane (see Fig. 1-15), it has a
capacitance of 3.3 pF. Therefore, the piece of wire acts like the circuit of Fig.
I-1c

Even this is not exact. The truth is you cannot draw a circuit at all because
the R, L, and C are distributed over the length of the wire rather than lumped

1



2 ELECTRONIC PRINCIPLES

’;*1 fttj 1£n.

#22 wire
(a) (b)

00162 g 0.24 uH

A €
3.3 pF
—(L_ Figure 1-1. A piece of
b wire and its equivalent
() circuat.

between nodes 4, B, C, and D. For exact analysis you need to use an approach
based on advanced formulas called Maxwell’s equations.

Fortunately, you don’t need Maxwell’s equations below 300 MHz, and you
can use lumped-constant circuits like Fig. 1-1c. (Lumped constant means the
resistance is between one pair of nodes, the inductance between another pair,
and the capacitance between a third pair.) Better yet, for frequencies below 1
MHz the inductive and capacitive reactances are usually negligible, and the wire’s
resistance is so small compared with other circuit resistance that it too is negligi-
ble. In other words, most of the time we idealize a piece of wire by neglecting
its R, L, and C

approximations

Make no mistake about it. At high enough frequencies you do need an equivalent
circuit like Fig. 1-1¢ for a piece of wire. This should give you a clue as to how
complicated the exact circuits are for some electronic devices. For most everyday
needs, we can approximate; otherwise, we’d be bogged down in unnecessary
detail. Throughout this book, we use approximations as much as possible.

The ideal, or first approximation, strips away everything but the key ideas
behind a device. In this way, we get to the bones of device operation. With
ideal devices, circuit analysis is easier. When necessary, we can improve the
analysis by using a second approximation, sometimes a third approximation,
and once in a while, an exact equivalent circuit. In the chapters to come, look
for these levels of approximation:

« Ideal or first approximation: the simplest equivalent circuit. It retains only
one or two ideas of how the device works.

« Second approximation: includes extra features to improve analysis. Usually,
this is as far as many engineers and technicians go in daily work.
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« Third approximation: includes other effects of lesser importance. In some
circuits, we will need this approximation.

« Exact circuit: this will be as complete as possible using lumped constants.
We almost never use this circuit.

resistor approximations

Every resistor has a small amount of inductance and capacitance. At lower fre-
quencies the unwanted L and C have negligible effect. But as the frequency
increases, the resistor no longer acts like a pure resistance.

exact circuit

Figure 1-2a shows the exact equivalent circuit of a resistor. The inductance
exists because current through the resistor produces a magnetic field. The capaci-
tance exists because voltage across the resistor produces an electric field.

At lower frequencies, the inductive reactance approaches zero and the capaci-
tive reactance approaches infinity. In other words, the inductor appears shorted
and the capacitor appears open. In this case, the resistor acts like a pure
resistance.

We will refer to the inductance as the lead inductance because much of it is
produced by the leads going into the resistor. And we will refer to the capacitance
as the stray capacitance because it represents the lumped capacitance between
the ends of the resistor.

second approximation

For most resistors the stray capacitance is more important than the lead induc-
tance. This is why our second approximation is the parallel RC circuit of Fig.
1-26. The stray capacitance of typical resistors (Y% to 2 W) is in the vicinity of
1 pF, with the exact value determined by the length of the leads, the size of

c [
]
HF
MW»—o O~ \N\—FT—0
R L R R L
(a) (b) (c)

Figure 1-2. Resistor equivalent circuits. (a) Exact. (b) Second approximation. (c) Third
approximation.
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the resistor body, and other factors. When you need the exact capacitance value,
you can measure it on an RLC bridge.

When is stray capacitance negligible? Many people use this guide: neglect
stray capacitance when reactance is ten times greater than resistance. That is,

Xc

—>10 1-1
R 1-1)
As an example, if a 10-kQ resistor has 1 pF of stray capacitance, the Xc at 1
MHz equals
1 1
Xo= = -
27w fC  2mw(10%) 10712
=159 kO
The ratio of reactance to resistance is
Xc 159 kO
—=——=159
R 10 kQ ?

This is greater than 10; therefore, we can neglect the stray capacitance of a
10-kQ) resistor operating at 1 MHz.

third approximation

When the resistance is very low, lead inductance is more important than stray
capacitance. In this case, we use the third approximation of a resistor (Fig.
1-2¢). This approximation includes lead inductance, approximately 0.02 pH/in
for wire sizes commonly used in electronic circuits. (These sizes are from around
AWG 18 to 26. AWG 18 has 0.018 pH/in; AWG 26 has 0.024 pH/in.)

When can you neglect lead inductance? The usual rule is this: neglect lead
inductance when

R
=>10 (1-2)
L

For example, suppose the leads of a 1-kQ resistor are cut to % in on each
end. Then, the total lead length is 1 in. Estimating the inductance by 0.02
pH/in, we have a lead inductance of 0.02 pH. At 300 MHz, the reactance is

X, = 2w fL=2mw(300)10%(0.02)10¢

=37.7Q
and the ratio of resistance to reactance is
R _ 1000

X, a7 209
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Therefore, even at 300 MHz we can neglect the lead inductance of a 1-k{)
resistor.

selecting an approximation

Which approximation of a resistor should you use? The ideal, the second, or
the third? The answer depends on the frequency and the value of resistance.

By setting X¢/ R= 10 and R/X, = 10, we can plot frequency versus resistance
as shown in Fig. 1-3. This graph gives the dividing lines between the ideal,
second, and third approximations, assuming a stray capacitance of 1 pF and a
lead inductance of 0.02 pH.

Here is how we use the graph. For any point below the two lines, we can
idealize the resistor, that is, neglect its capacitance and inductance. On the
other hand, if a point falls above either line, we may want to use the second
or third approximation. For instance, a 10-kQ resistor operating at 1 MHz can
be idealized because it falls in the ideal region of Fig. 1-3. But if this 10-kQ
resistor operates at 5 MHz, we may include stray capacitance in precise calcula-
tions. Similarly, a 20-Q resistor acts ideally up to 16 MHz, but beyond this
frequency, the lead inductance becomes important.

Don’t lean too heavily on Fig. 1-3; it is only a guide to help you estimate
when to include stray capacitance or lead inductance in your calculations. If
working at high frequencies where precise analysis is required, you may have
to measure the stray capacitance and the lead inductance on a high-frequency
RLC bridge.

inductor and capacitor approximations

Figure 1-4a shows the ideal, second, and third approximations of an inductor.
For frequencies where only the X, matters, we use the ideal approximation.
But at lower frequencies where X; is not large compared with R, we must use
the second approgimation. At higher frequencies, the distributed capacitance
between the inductor windings becomes important. In this case, we need the
third approximation shown in Fig. 1-4a. We will use these inductor approxima-
tions later.

Figure 1-45 shows the approximations for a capacitor. Most of the time, we
can idealize a capacitor. For large capacitors, especially the electrolytic type,
we may include the leakage resistance (the second approximation). And at the
highest frequencies, the lead inductance becomes important; therefore, occasion-
ally, we need the third approximation shown in Fig. 1-4b.
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