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Preface

Generally, the modeling used in the study of systems can be classified as
being either implicit or explicit. Implicit models are those in which the
system response is expressed as an implicit operation on the system
input. An example is the modeling of the relation between the system
response and input by a differential equation. Explicit models are those
in which the system response is expressed as an explicit operation on
the system input. An example is the modeling of the relation between
the system response and input by a convolution integral. Neither type of
model is all encompassing and each provides insights not provided by the
other. The model that is best to use thus depends on the specific questions
being asked and the specific understanding of the system operation being
sought. For example, the study of system oscillations normally is best
achieved using implicit models whereas the study of the spectrum of the
system response for a random input normally is best achieved using
explicit models. The Volterra and Wiener theories of nonlinear systems are
explicit models.

One major area of study for which these theories are ideally suited is
the modeling of ‘“‘black boxes.” Many problems in analysis, design, and
control require accurate models of the systems involved. Sometimes
sufficient information concerning a system is available so that a set of
equations that accurately model the system can be derived. More often,
a system is available only as a ‘“black box” so that the relation between
the system input and output is not so derivable. This is especially the
case for many nonlinear physical and biological systems. The Volterra
and Wiener theories often can be used to analyze such systems. In this
book, the modeling of “black boxes” by these theories is discussed in
detail. Also the various insights and simplifications in nonlinear system
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viii Preface

analysis, characterization, and  synthesis provided by these theories is
presented as part of their development.

Since this is the first book to be written on this subject, the organiza-
tion, development, and the interpretation of the material presented is, to
a large extent, the outgrowth of my own research. However, the
influence of my teachers Y. W. Lee and N. Wiener is present throughout
the text. The Volterra theory is developed in the first six chapters of the
text. It is developed in a new way from the viewpoint of p-linear
operators. This simplifies and lends a great deal of insight to the theory.
Some applications of the Volterra theory to the study of nonlinear
differential equations, nonlinear feedback, and the inverse of a nonlinear
system is then discussed in Chapters 7 and 8. Only the basic concepts
and methods are discussed together with some numerical illustrations.
Details of specific applications of the Volterra series can be obtained
from the references listed in Appendix B. The Wiener theory of non-
linear systems is then motivated and developed in Chapters 9-14. In
Chapter 15, the Wiener theory is used as the basis of a method for
determining optimum nonlinear models of a given or desired system. To
develop a deeper insight into the Wiener theory, a detailed decom-
position of the Wiener characterization of a nonlinear system, called the
Wiener model, is developed and analyzed in Chapters 16-20. Many of
the advantages of the Wiener model derive from its erthogonal proper-
ties when the input is a Gaussian waveform. Using the insights gained
from the Wiener model, I develop in Chapter 21 another type of model
based on the gate functions, which are orthogonal irrespective of the
input waveform. This generalization of the gate model over the
Wiener model is, however, obtained at a cost. The cost is that a larger
number of coefficients must be determined in order to specify the model. In
the final chapter, this cost is analyzed and methods of minimizing this cost
for either the gate or the Wiener model are developed.

The Volterra and Wiener theories have been shown to be useful in
many areas of study. A number of these areas are referenced in
Appendix B. In consequence this text has been written in a manner that
is comprehensible to a broad scientific audience for individual stady or
classroom use at the first year graduate level. An undergraduate course
on linear system theory is all that is required to begin the study of this
text. An elementary background on random process theory is useful in
the study of the second part of this text on the Wiener theory of
nonlinear systems. If the reader does not possess this background, it can
be obtained from one of the many available books on random process
theory or on communication theory.

In order to facilitate the study of this text, a general concept often is
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introduced by first presenting examples of various orders of complexity
to help the reader better visualize the general result being developed.
Also, in developing certain methods of analysis, the ‘‘brute force”
approach is presented first. From this, some insights are obtained that
are then used to develop a simpler method from which a better compre-
hension of the underlying analytical structure is obtained. The problems
I composed for this text have been designed to aid the reader in
developing a better understanding of the material presented. Thus some
problems are simply exercises in utilizing the concepts developed or to
fill in some details omitted in the text. Other problems, however, further
develop some of the concepts and theories developed in the text. These
problems are important since some new useful results are developed in a
number of them. Working through these problems with the guidance
given will aid the reader to obtain a deeper comprehension of the
material presented.

No references are appended at the end of each chapter. Rather, to
give a historical perspective of the development of the Volterra and
Wiener theories and to properly credit the major contributors to the
theories, I have written a historical bibliography which is included in
Appendix B. References to further developments of the material dis-
cussed in this text is included in the bibliography. However, there is
much new material included which I developed in the process of writing
this text and have not previously published.

It is a pleasure for me to express my thanks to Mr. Janusz Sciegienny
who did all the programming for the computer plots in Chapter 8 and to
Dr. Cynthia Whitney who read a draft of the manuscript and made a
number of valuable suggestions. I am especially grateful to Leslie M.
Herman who cheerfully typed a draft of the manuscript from my
handwritten copy and to Doris R. Simpson for her competent and
patient typing of the entire manuscript. Finally, my heartfelt thanks to
Jeannine Desrochers, who helped me with the tedious task of
proofreading the galley and page proofs. This book was completed while
I was a visiting professor in the Electrical Engineering and Computer
Sciences Department of the University of California, Berkeley. The friendly
and intellectually stimulating atmosphere there contributed greatly to my
completing this text on which I had been working for some years.

MARTIN SCHETZEN

Boston, Massachusetts
September 1979
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ONE
General Introduction

1.1 BASIC SYSTEM CONSIDERATIONS

A system can be defined in a mathematical sense as a rule by which an
excitation x is mapped into a response y. The rule can be expressed
symbolically as

y = T[x] (1.1-1)

In scientific applications, the response and the excitation usually are
functions of an independent variable, such as position or time. If they
are only functions of time, ¢, the expression in eq. 1.1-1 is written in the
form

y(t) = Tx(®)] (1.1-2)

In this representation, T is called an operator because the response
function y(t) can be viewed as being produced by an operation on the
input function x(¢). The statement that y(t) is the response of a system
to the excitation x(f) means that there exists an operator T or,
equivalently, a rule by which any given input x(t) is mapped into a
unique output y(¢).

The mapping can be viewed as shown in Figure 1.1-1 where the set of
all possible inputs is denoted by X and the set of all possible outputs is
denoted by Y. In the figure, the time functions denoted by x; and x; are
both mapped into the same output y,. Note however, that one input can
not be mapped into more than one output. A system operator thus
constitutes a many-to-one mapping. For example, a square-law device
characterized by the mapping y(t) = x%(t) is a system; however, the time
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Figure 1.1-1 The mapping of operator T.

function x(¢) cannot be recovered from y(¢) by a system, since it would
require the mapping of one input into more than one output. The reason
for the impossibility of such a system is that, in taking the square root of
y(t), there is no general rule by which the correct sign of x(¢) can be
known from only y(¢). Thus there is no system that is the inverse of a
square-law device. In general, we note that a system that is the invers~
of a given system will exist if and only if the system operator T is :
one-to-one mapping.

Two major aspects of system theory are analysis and synthesis. In
analysis, the operator T of a given or desired system is determined. In
synthesis, a system with a given operator is constructed from a given set
of elemental systems. If nothing is known a priori concerning the system
operator T, then analysis can only consist of the construction of a list of
input functions and the corresponding output functions. Nothing,
however, could be said concerning the output function corresponding to
an input function that is not on the list. Further, with only such a list
available, synthesis would be, to say the least, extremely difficult. Thus,
even if the construction of such a list were possible, it would not be very
useful. In order to do meaningful analysis and synthesis then, we require
some a priori knowledge of the system.

To fulfill the above requirements, system operators are categorized
into various classes. All operators that are members of a given class
have certain common properties that form the bases for analysis and
synthesis procedures. The required a priori knowledge is whether a
system can be considered to be a member of a particular class. The
particular class is not unique; rather, the choice of a class is determined
by the objectives of the analysis or synthesis. One class that encom-
passes a very large number of physical systems of importance is that
described by Wiener. Roughly this class includes all time-invariant
physical systems with noninfinite memory. An example of a system with
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infinite memory—and thus not included in the Wiener class—is a fuse
that will never forget that the current through it exceeded its rating. In
this book, we develop the theory of the Wiener class, which is the
Wiener theory of nonlinear systems. This theory is based on an ortho-
gonalization of a specific, complete set of time-invariant operators, H,,
called the Volterra operators. The comprehension of the Wiener theory,
its implications, and its applications requires a basic understanding of
these Volterra operators. Thus we begin with a development of the
Volterra theory.

1.2 TIME-INVARIANT AND TIME-VARYING SYSTEMS

In the last section, Volterra operators were referred to as time-invariant
operators. We discuss exactly what is meant by a time-invariant opera-
tor in this section. Consider the system shown in Figure 1.2-1 with the
output y(t) for the input x(¢). A time-invariant system is one for which
the operator T does not vary with time so that a time translation of the
input results in the same time translation of the output. In mathematical
terms, we let

y1(8) = T[xy(2)] (1.2-1)
The system is time invariant if for the input
x(t) = x\(t + 1) (1.2-2)

the output is

ya(t) = Tlxy(2)]
= T[x(t + 7)]
=y(t+71) (1.2-3)

For example, consider a time-invariant system with the output y,(¢)
for the input x,(¢) shown in Figure 1.2-2. Then, for the input x,(¢ + 7), the
output is y,(t +7) as shown in the figure. For a system to be time
invariant, eq. 1.2-3 must be true for any function x,(¢) that can be
considered as an input to the system. A system that is not time invariant is
said to be a time-varying system.

x(t) yl(t)
— System Figure 1.2-1 Schematic representation of a system.
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x1(t) yl(t)
0 t 0 t
xq(t+71) yalt+7)
-r 0 t =7 0 ¢

Figure 1.2-2 The input-output relationship of a time-invariant system.

As an illustration of the application of eq. 1.2-3 to a particular system,
consider the resistor circuit shown in Figure 1.2-3. For the system
shown, the input is the voltage v;(t) and the corresponding output is the
voltage vo(t). The relation between the output and the input is

1) = A g ti) (1.2-4)
The output for the input vy(t) = v;(¢t + 7) is
_ Ry
yAt) = m):‘—Rz(t)UZ(t)
= ﬁ(%zu)vi(t +7) (1.2-5)
— T/\/\,— T
I R (t) T r
vi(t) [ Rolt) , volt)
: R
N

Figure 1.2-3 Circuit for a time-varying system.



