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Preface

This volume contains some of the lectures presented at the 1994 AMS/SIAM
Summer Seminar, held June 20-July 1 at the Mathematical Sciences Research
Institute in Berkeley. It was the intent of the organizers of the summer seminar
to introduce the participants to as many of the interesting and active applications
of dynamical systems to problems in applied mathematics as the time constraints
of the workshop allowed. Consequently, this book covers a great deal of ground.
Nonetheless, the pedagogical orientation of the lectures has been retained in this
volume, and as such, we hope that it will serve as an ideal introduction to these
varied and interesting topics.

While the focus of the workshop was quite broad, several organizing prin-
ciples emerged. The first was the increasing role of dynamical systems theory
in our understanding of partial differential equations. The first three contribu-
tions of the present volume are devoted to this theme. In particular, all of these
lecturers stressed the importance that the geometrical structures present in the
phase spaces of these systems have for our understanding of their dynamics. A
second theme was the central importance of certain prototypical partial differ-
ential equations. These equations, which include the complex Ginzburg-Landau,
nonlinear Schrodinger and Korteweg-de Vries equations, arise in many different
contexts and hence have an importance that transcends their apparently special
form. In this book, two sets of lectures explore this phenomenon in greater detail
for the complex Ginzburg-Landau equation, one examining in detail the sorts of
phenomena that can arise in this equation, and the other focussed on showing rig-
orously how a knowledge of the behavior of the solutions of the Ginzburg-Landau
equation implies information about a host of more complicated systems. In addi-
tion to their ubiquity, the nonlinear Schrédinger and Korteweg-de Vries equation
share the additional remarkable property of being completely integrable. The
meaning and consequences of complete integrability are explored in the lectures
of section 2. Finally, the last set of lectures looks specifically at problems in fluid
mechanics and turbulence. More specifically, it examines the extent to which
one can determine the limits of popular physically motivated heuristic theories
of fluids like the renormalization group and the Kolmogorov scaling law.

Percy Deift
C. David Levermore
C. Eugene Wayne
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An Introduction to KAM Theory

C. EUGENE WAYNE

1. Introduction

Over the past thirty years, the Kolmogorov-Arnold-Moser (KAM) theory has
played an important role in increasing our understanding of the behavior of non-
integrable Hamiltonian systems. I hope to illustrate in these lectures that the
central ideas of the theory are, in fact, quite simple. With this in mind, I will
concentrate on two examples and will forego generality for concreteness and (I
hope) clarity. The results and methods which I will present are well-known to
experts in the field but I hope that by collecting and presenting them in as
simple a context as possible I can make them somewhat more approachable to
newcomers than they are often considered to be.

The outline of the lectures is as follows. After a short historical introduction,
I will explain in detail one of the simplest situations where the KAM techniques
are used — the case of diffeomorphisms of a circle. I will then go on to discuss
the theory in its original context, that of nearly-integrable Hamiltonian systems.

The problem which the KAM theory was developed to solve first arose in ce-
lestial mechanics. More than 300 years ago, Newton wrote down the differential
equations satisfied by a system of massive bodies interacting through gravita-
tional forces. If there are only two bodies, these equations can be explicitly
solved and one finds that the bodies revolve on Keplerian ellipses about their
center of mass. If one considers a third body (the “three-body-problem”), no
exact solution exists — even if, as in the solar system, two of the bodies are
much lighter then the third. In this case, however, one observes that the mutual
gravitational force between these two “planets” is much weaker than that be-
tween either planet and the sun. Under these circumstances one can try to solve
the problem perturbatively, first ignoring the interactions between the planets.
This gives an integrable system, or one which can be solved explicitly, with

1991 Mathematics Subject Classification. Primary 58F05; Secondary 34C20 70HO5.
The author was supported in part by NSF Grant #9203359
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4 C. EUGENE WAYNE

each planet revolving around the sun oblivious of the other’s existence. One
can then try to systematically include the interaction between the planets in a
perturbative fashion. Physicists and astronomers used this method extensively
throughout the nineteenth century, developing series expansions for the solutions
of these equations in the small parameter represented by the ratio of the mass
of the planet to the mass of the sun. However, the convergence of these series
was never established — not even when the King of Sweden offered a very sub-
stantial prize to anyone who succeeded in doing so. The difficulty in establishing
the convergence of these series comes from the fact that the terms in the series
have small denominators which we shall consider in some detail later in these
lectures. One can obtain some physical insight into the origin of these conver-
gence problems in the following way. As one learns in an elementary course in
differential equations, a harmonic oscillator has a certain natural frequency at
which it oscillates. If one subjects such an oscillator to an external force of the
same frequency as the natural frequency of the oscillator, one has resonance
effects and the motion of the oscillator becomes unbounded. Indeed, if one has a
typical nonlinear oscillator, then whenever the perturbing force has a frequency
that is a rational multiple of the natural frequency of the oscillator, one will have
resonances, because the nonlinearity will generate oscillations of all multiples of
the basic driving frequency. '

In a similar way, one planet exerts a periodic force on the motion of a second,
and if the orbital periods of the two are commensurate, this can lead to resonance
and instability. Even if the two periods are not exactly commensurate, but only
approximately so the effects lead to convergence problems in the perturbation
theory.

It was not until 1954 that A. N. Kolmogorov [8] in an address to the ICM in
Amsterdam suggested a way in which these problems could be overcome. His
suggestions contained two ideas which are central to all applications of the KAM
techniques. These two basic ideas are:

e Linearize the problem about an approximate solution and solve the lin-
earized problem — it is at this point that one must deal with the small
denominators.

e Inductively improve the approximate solution by using the solution of
the linearized problem as the basis of a Newton’s method argument.

These ideas were then fleshed out, extended, and applied in numerous other
contexts by V. Arnold and J. Moser, ([1], [9]) over the next ten years or so,
leading to what we now know as the KAM theory.

As I said above, we will consider the details of this procedure in two cases.
The first, the problem of showing that diffeomorphisms of a circle are conju-
gate to rotations, was chosen for its simplicity — the main ideas are visible with
fewer technical difficulties than appear in other applications. We will then look
at the KAM theory in its original setting of small perturbations of integrable



AN INTRODUCTION TO KAM THEORY 5

Hamiltonian systems. I'll attempt to parallel the discussion of the case of circle
diffeomorphisms as closely as possible in order to keep our focus on the main
ideas of the theory and ignore as much as possible the additional technical com-
plications which arise in this context.

Acknowledgments: It is a pleasure to thank Percy Deift and Andrew To6rok
for many helpful comments about these notes.



6 C. EUGENE WAYNE

2. Circle Diffeomorphisms

Let us begin by discussing one of the simplest examples in which one encoun-
ters small denominators, and for which the KAM theory provides a solution.
It may not be apparent for the moment what this problem has to do with the
problems of celestial mechanics discussed in the introduction, but almost all of
the difficulties encountered in that problem also appear in this context but in
ways which are less obscured by technical difficulties — this is, if you like, our
warm-up exercise.

We will consider orientation preserving diffeomorphisms of the circle, or equiv-
alently, their lifts to the real line:

¢:R' - R!
¢(z) = = + 7i(z) with f(z + 1) = 7j(z) and 7'(z) > -1 .
We wish to consider ¢ as a dynamical system, and study the behavior of its
“orbits” — i.e. we want to understand the behavior of the sequences of points
{6 (z)(mod1)}22,, where ¢(™) means the n-fold composition of ¢ with itself.
Typical questions of interest are whether or not these orbits are periodic, or
dense in the circle.

The simplest such diffeomorphism is a rotation R,(z) = z + a. Note that
we understand “everything” about its dynamics. For instance, if « is rational,
all the orbits of R, are periodic, and none are dense. However, we would like

to study more complicated dynamical systems than this. Thus we will suppose
that

(1) ¢(z) =z +a+n(z),

where as before, n(z + 1) = n(z) and 7'(z) > —1. As I said in the introduction,
I will not attempt to consider the most general case, but rather will focus on
simplicity of exposition. Thus I will consider only analytic diffeomorphisms.
Define the strips S, = {z € C | |Imz| < o}. Then I will assume that

n € B, ={n | n(2) is analytic on S,,
n(z+1) =n(z) and sup [|n(z)| = [|nllo < oo} .

|[Imz|<o

Note that one can assume that ¢ < 1, without loss of generality.

Our goal in this section will be to understand the dynamics of ¢(z) = = +
a + n(z) when 7 has small norm. One way to do this is to show that the
dynamics of ¢ are “like” the dynamics of a system we understand — for instance,
suppose that we could find a change of variables which transformed ¢ into a pure
rotation. Then since we understand the dynamics of the rotation, we would also
understand those of ¢. If we express this change of variables as £ = H(£), where
H(€+1) =1+ H(&) preserves the periodicity of ¢, then we want to find H such
that

H™ o¢o H(§) = Ry(€)
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or equivalently

() ¢po H(§) = HoRy(E) -
Such a change of variables is said to conjugate ¢ to the rotation R,.

REMARK 2.1. The relationship between this problem and the celestial mechan-
ics questions discussed in the introduction now becomes more clear. In that case
we wanted to understand the extent to which the motion of the solar system when
we included the effects of the gravitational interaction between the various planets
was “like” that of the simple Kepler system.

In order to answer this question we need to introduce an important charac-
teristic of circle diffeomorphisms, the rotation number

DEFINITION 2.1. The rotation number of ¢ is
p(¢) = lim ¢ (z) -~z _
n—oo n
REMARK 2.2. It is a standard result of dynamical systems theory that for any
homeomorphism of the circle the limit on the right hand side of this equation
exists and is independent of . (See [6], p. 296.)

REMARK 2.3. Note that from the definition of the rotation number, it follows
immediately that for any homeomorphism H, the map é=HYo¢oH has the
same rotation number as ¢. (Since (™ = H=1 o ¢™ o H, and the initial and
final factors of H and H~! have no effect on the limit.)

As a final remark about the rotation number we note that if ¢(z) =z + a +
n(z), then an easy induction argument shows that p(¢) = a+lim, .o L Z?;ol no
¢U)(z). In particular, if « = p, we have lim,_, £ Z;.‘:‘S no ¢\ (z) = 0, so we

have proved:

LEMMA 2.1. If ¢(z) = = + p + n(x) has rotation number p, then there exists
some xo such that n(zo) = 0.

We must next ask about the properties we wish the change of variables H to
have. If we only demand that H be a homeomorphism, then Denjoy’s The-
orem ([6] p. 301) says that if the rotation number of ¢ is irrational, we can
always find an H which conjugates ¢ to a rotation. However, if we want more
detailed information about the dynamics it makes sense to ask that H have ad-
ditional smoothness. In fact, it is natural to ask that H be as smooth as the
diffeomorphism itself — in this case, analytic. (There will, in general, be some
loss of smoothness even in this case. We will find, for example, that while there
exists an analytic conjugacy function, H, its domain of analyticity will be some-
what smaller than that of ¢.) Surprisingly, the techniques which Denjoy used
fail completely in this case, and the answer was not known until the late fifties
when Arnold applied KAM techniques to answer the question in the case when
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7 is small. Even more surprisingly, in order to even state Arnold’s theorem, we
have to discuss a little number theory.

Any irrational number can be approximated arbitrarily well by rational num-
bers, and in fact, Dirichlet’s Theorem even gives us an estimate of how good
this approximation is. More precisely, it says that given any irrational number p,
there exist infinitely many pairs of integers (m,n) such that |p— (m/n)| < 1/n2.
On the other hand, most irrational numbers can’t be approximated much better
than this.

DEFINITION 2.2. The real number p is of type (K,v) if there exist positive
numbers K and v such that |p — (m/n)| > K|n|™", for all pairs of integers
(m,n).

PROPOSITION 2.1. For every v > 2, almost every irrational number p is of
type (K, v) for some K > 0.

Proof: The proof is not difficult, but would take us a bit out of our way. The
details can be found in [3], page 116, for example. Note also, that we can assume
without loss of generality that K < 1, since if p is of type (K, v) for some K > 1,
it is also of type (1,v).

THEOREM 2.1 (ARNOLD’S THEOREM [1]). Suppose that p is of type (K,v).
There ezists €(K,v,0) > 0 such that if ¢(z) = = + p+ n(z) has rotation number
p, and ||n|l, < €(K,v,0), then there exists an analytic and invertible change of
variables H(x) which conjugates ¢ to R,.

As mentioned above, Arnold’s proof of this theorem used the KAM theory.
The proof can be broken into two main parts — an analysis of a linearized equa-
tion, and a Newton’s method iteration step. These same two steps will reappear
in the next section when we discuss nearly integrable Hamiltonian systems, and
they are characteristic of almost all applications of the KAM theory.

REMARK 2.4. It may seem that by assuming that the diffeomorphism is of the
form ¢(z) = z+p+n(x), where p is the rotation number of ¢, we are considering
a less general situation than that described above in which we allowed ¢ to have
the form z + a + n(z). As we shall see below, there is no real loss of generality
in this restriction.

Step 1: Analysis of the Linearized equation

Note that since ||7||, is small, the diffeomorphism ¢ is “close” to the pure
rotation R,. Thus, we might hope that if a change of variables H which satisfies
(2) exists is would be close to the identity i.e. H(z) = z + h(z), where h is



