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Preface

The purpose of this book is to present some new developments in the asymptotic
analysis of nonlinear differential equations with particular attention paid to the
limit—point/limit—circle problem. Nearly one hundred years have passed since
Hermann Weyl first investigated this problem for second order linear differen-
tial equations. Since then this problem has been extended in various directions
including:

e spectral analysis of differential operators of order 2n;

e LP/LC problem for second order nonlinear differential equations;

e LP/LC problem for higher order nonlinear differential equations;

e the problem of existence of solutions not in L? for second order equations;

e the problem of existence of at least one solution in L? for second and higher
order equations;

e the problem of existence of at least one solution in L” for second and higher
order equations.

Our attention here is focused on the extension of the classical Weyl problem to
nonlinear equations in the sense that either all solutions are of the “‘nonlinear limit—
circle type” or there is at least one solution that does not have this property. Some
related problems, such as the existence of an L? solution, are not treated here.
We should emphasize that for nonlinear problems, the existence of continuable
solutions and singular solutions plays an important role. (This is discussed in
detail in Chapter 2.)

The book consists of nine chapters. Chapter 1 discusses the origin of the
limit—point/limit—circle problem including the motivation for the choice of this
terminology. Chapter 2 gives the basic definitions and extension for nonlinear dif-
ferential equations and examines the question of the existence of both continuable
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and singular solutions. Chapter 3 presents our results for second order nonlinear
equations, including some necessary and sufficient conditions for a second order
nonlinear equation to be of the “nonlinear limit—circle type.” Chapter 4 describes
some early attempts at obtaining limit—point type results for second and higher
order nonlinear equations. In the last section in this chapter, we also describe
some recently obtained results that are related to these earlier ones. In Chapter 5,
we examine the connection between the limit—ircle property and other properties
of solutions of linear and nonlinear equations such as boundedness, oscillation,
and convergence to zero. Chapters 6 and 7 examine the limit—point/limit—circle
problem for third and fourth order equations, respectively. Chapter 8 is devoted to
equations of arbitrary order, and Chapter 9 discusses the relationship between the
limit-point/limit—circle problem and the spectral theory of differential operators.
There are more than 120 references, and a number of open problems for future
research are included.

Our joint interest in this problem began in the fall of 1993 when J. R. Graef
visited Brno and gave a survey lecture on the status of the nonlinear limit—
point/limit-circle problem. His own interest in the problem began in the late
1970s and included some collaboration with P. W. Spikes on second order nonlin-
ear equations while they were both on the faculty at Mississippi State University.
With that initial visit to Brno, the present authors began collaborating on the non-
linear limit—point/limit—circle problem and this led quite naturally to the present
monograph.

We wish to express our thanks to Doc. RNDr. Jaromir Kuben, CSc., for his
assistance in preparing the electronic files for this manuscript. We also wish to
thank Ann Kostant and the staff at Birkhduser Boston; they are an excellent team
to work with.

M. Bartusek

Z. Dosla

J. R. Graef

Brno, Czech Republic and Chattanooga, Tennessee
October 2003



Basic Notation

L([a, b))
LI{)C(R+)

let)c‘(R+)
ACI(}L’(R+)
C*([a, b))

CO(R4)
g(1) = O (h(t))
1

the set of real numbers;

the set of complex numbers;

the set of nonnegative real numbers, i.e., the interval [0, 00);
the set R x --- x R (n times);

the set of Lebesgue square integrable functions u: R, — R;
the set of Lebesgue integrable functions u : [a, b] — R;

the set of integrable functions u: R} — R whose restriction
to any interval [a, b] belongs to L([a. b]);

the set of locally square integrable functions on [0, 00);

set of all locally absolutely continuous functions on [0, 00);
the set of k times continuously differentiable functions
u:la,b] - R;

the set of continuous functions u: Ry — R;

g()/h(t) is bounded as ¢t — 00;

the greatest integer function of n.
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Chapter 1

Origins of the Limit-—Point/
Limit-Circle Problem

In this chapter, we begin with a discussion of the origins of the limit—point/limit—
circle problem including a motivation for the choice of this terminology. We
then discuss its relationship to the notion of the deficiency index and describe the
classical results for second order linear equations.

1.1. The Weyl Alternative

In 1910, Hermann Weyl [114] published his now classic paper on eigenvalue
problems for second order linear differential equations of the form

a@®)y +r@@)y=»xry, tel0,00), xeC, (1.1)

and he classified this equation to be of the limit—circle type if every solution is
square integrable, i.e., belongs to L2, and to be of the limit—point type if at least
one solution does not belong to L2. In the ensuing years there has been a great deal
of interest in the limit—point/limit—circle problem due to its importance in relation
to the solution of certain boundary value problems (see Titchmarsh [109, 110]).
As we will see later, the study of the analogous problem for nonlinear equations
is relatively new and not nearly as extensive as for the linear case.

To understand the basis for Weyl’s terminology, we begin with one of his fun-
damental results. The terminology limit—point/limit—circle arises in a somewhat
natural way from the proof of this result, a sketch of which will be given.

Theorem 1.1. If Im A # O, then (1.1) always has a solution y € L*(R,), i.e.,
o0
/ ly(1)|%dt < oo.
0



2 Origins of the Limit—Point/ Limit—Circle Problem

Sketch of the Proof. For A with Im A # 0, let ¢ and v be two linearly independent
solutions of (1.1) satisfying the initial conditions

e0,2) =1, (0,1 =0,
¢'(0,2) =0, '(0,1)=1.

The functions (¢, 1) and ¥ (¢, A) are analytic in A on C. Then, any other solution
y is a linear combination of these solutions, say,

Y&, A) =@, A) +m)y(,2).

Choose b > 0 and let ¢, and ¢, be arbitrary but fixed constants; we want to
determine m(A) so that the solution y satisfies

c1y(b, A) + c2y'(b, 1) = 0. (1.2)

This desired value of m depends on A, b, ¢;, and ¢, and in fact has the form of the
linear fractional transformation
Az+ B
m = .
Cz+D

The image of the real axis in the z-plane is a circle G, in the m-plane. The
solution y will satisfy (1.2) if and only if m is on G,. An argument using Green’s
identity shows that this is true if and only if

b
Imm

2
d = Ee——
/Oly(S)I =

and the radius of the circle G, is

b -1
ry = (ZImA/ |y(s);2ds) (1.3)
0

Observe that if b; < b, then

by b
/ ly(s)|%ds < f ly(s)|%ds,
0 0

SO rp < ry,, l.e., the circle Cp, contains the circle G, in its interior. Thus, as
b — oo, the circles G, converge either to a circle Cy or to a point mq,. If the
limiting form is a circle, then ro, > 0, and so (1.3) implies

o]
/ ly(s)Ids < oo,
0
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i.e., y € L* for any m on Cy. If the limit is the point m, then ro, = 0 and there
is only one solution in L. O

Titchmarsh [109, 110] discusses the connection between the limit—point prop-
erty and the existence of a unique Green’s function for second order linear dif-
ferential equations. In the limit—circle case, the Green’s function depends on a
parameter.

Essential to the study of the limit-point/limit—circle problem is the following
result of Weyl.

Theorem 1.2. If (1.1) is limit-circle for some Ag € C, then (1.1) is limit-circle for
all » € C.

In particular, Theorem 1.2 holds for A = 0, that is, if we can show that equation
(1.1) is limit—circle for A = 0, then it is limit—circle for all values of A. Moreover,
if (1.1) is not limit—circle for A = 0, then it is not limit—circle for any value of A. In
view of Theorem 1.1, for second order equations the problem reduces to whether
equation (1.1) with ImX # O has one (limit-point case) or two (limit—circle case)
solutions in L2 (this is known as the Weyl Alternative). As we will see later, the
situation for higher order equations is somewhat different in that the limit-point
and limit—circle cases do not form a dichotomy.

The limit-point/limit—circle problem then becomes that of determining neces-
sary and/or sufficient conditions on the coefficient functions to be able to distin-
guish between these two cases. Weyl’s results have spawned research in a variety
of directions including the study of what is called the deficiency index problem,
which we describe in the next section.

1.2. The Deficiency Index Problem

The extension of the limit—point/limit—circle problem for second order equations to
equations of higher order leads to the study of the deficiency index for self-adjoint
differential operators. Consider the differential expression

- . 2\ @
() =YD (py©) = =1 a0y
i=0

+ (=) (Pt @y o (=D YYD + po(r)y  (1.4)

where p;, i = 0,...,n are real-valued functions for t € Ry, p,(r) > 0, and
p;‘, Pn-1s - +» Po € Lioc(Ry). Then, the minimal operator L, associated with
this differential expression has self-adjoint extensions; see, for example, Naimark
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[94, §17]. The deficiency index, denoted by m, of Ly is the number of linearly
independent solutions of

L(y) =Ay, Imi#£0, (1.5)

that are in L? (see Devinatz [34]). The number m is independent of A (as long as
Im A # 0) and the possible values for m are

nn+1,...,2n,

with the exact value taken depending on the coefficients p;.

There is a higher order counterpart of Theorem 1.2 above (see Naimark [94,
Theorem 4, p. 93]). That is, (1.5) has all its solutions in L2, i.e., is (higher order)
limit-circle if and only if the equation

L(y)=0 (1.6)

has all its solutions in L. Thus, in what follows, we only study the limit—circle
problem for equation (1.6).

For some time it was believed that the deficiency index was always either n
or 2n, and as we saw in Section 1.1, this is the case for second order equations.
However, for higher order equations, any value between n and 2n is possible (see
Glazman [57]). Some authors refer to the case m = n as the limit—point case for
higher order linear equations.

Several conjectures on the value of the deficiency index m have been posed
over the years; here we will briefly discuss a couple of them.

e Everitt’s conjecture (1961): Ifpj 20forall j=0,...,n, thenm = n.

o Kauffman (1976) disproved this conjecture giving the example that the
operator —(x“y”")” + Kx% “y has the deficiency index m > 3.

e McLeod’s conjecture (1962): If p; > O forall j =0, ..., n, thenn <m <
2n — 1 and all m occur.

As far as we know this conjecture is still open.

e Paris and Wood (1981) proved: Forevery j with0 < j < [[%]] there exists
a real formally self-adjoint expression of order 2n with nonnegative coefficients
having deficiency indexm = n + 2j.

e Schultze (1992) improved the range of values covered by showing: For
every j, 0 < j < n/2 there exists such an expression having deficiency index
m=n-+2j.

This still leaves half of the values between n and 2n unaccounted for.
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An excellent historical account of the development of the deficiency index
problem can be found in the survey article by Everitt [49] which contains more
than sixty references to work prior to 1976; also see [50, 51].

1.3. Second Order Linear Equations

In the study of the linear equation
(@®)y) +r(t)y =0, (1.7)

where a, r : Ry — R is continuous, a’, r’ € ACioc(Ry), a”, r" € L (Ry),
a(t) > 0, and r(t) > 0, it has proven useful (see Dunford and Schwartz [37] or
Burton and Patula [24]) to make the transformation

Tre)?
s=/ [——] du, x(s)=y(), (1.8)
o Lau)

and let ““ - ” denote j—‘ Then, we have
j . .ds .
Y = k)~ = [r()/a()]} 5(s),

a(t)y'(t) = la@®r(n)]2i(s),
and
@@y ®) = la@rnOFEE)r @ /an]? + %[a(r)r(x)r%[a(z)r(z)]’x(s>
= r()i(s) + la()r ()15 (s)/2[a(t)r ()]}
Equation (1.7) then becomes
X(s) + 2p()x(s) + x(s) =0

where 1 .
p@) = [a@®)r®)) /4a?(t)ri(t).

The following theorem due to Dunford and Schwartz [37, p. 1410] is probably
the best known limit—circle result for equation (1.7).

Theorem 1.3. Assume that

r

’

[(a(u)r(u))’] +{[a(u)r(u)]’}2 du

a%(u)r%(u) 4a§(u)r%(u)

< 00. (1.9)
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If
/ [1/(a(u)r@))?)du < oo, (1.10)
0

then equation (1.7) is limit—circle, i.e., every solution y(t) of (1.7) satisfies

/ yz(u)du < 0.
0

Their corresponding limit—point result is the following.

Theorem 1.4. Assume that (1.9) holds. If

/oo[l/(a(u)r(u))-*]du:oo, (1.11)
0

then equation (1.7) is limit-point, i.e., there is a solution y(t) of (1.7) such that

f yz(u)du = 00.
0

Remark 1.1. Everitt [47] proved that the linear equation (1.7) is of the limit—circle
type if (1.10) holds and the condition (1.9) of Dunford and Schwartz is replaced
by

/ (la@)(@G)r @)~ (@@)r @)1 Ydu < co. (1.12)
0

Wong [118, Proposition, p. 424] showed that equation (1.7) is of the limit—circle
type if (1.10) holds and

| Jleoreortewt@uray - y|au <o, iy
0

By showing that conditions (1.10) and (1.12) imply (1.13), he thus has an extension
of Everitt’s result.

Remark 1.2. When a(f) = 1 so that equation (1.7) reduces to
Y'+r(t)y =0, (1.14)
then condition (1.9) of Dunford and Schwartz becomes

r

r'w)  S[r')?
r32u) 452 3)

< 00. (1.15)
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Burton and Patula [24, Theorem 1] (also see Knowles [84, Theorem 5]) proved
a variation of Theorem 1.3 for equation (1.14) by replacing conditions (1.9) and
(1.10) (with a(¢) = 1) of Dunford and Schwartz with the single condition

% I (0)7/2 2 / 4
/ [r( )] (1/4)/ (r'(w) rz(u) du
o Lr(s) 4r’(u) r2(u)
Knowles [82] showed that conditions like (1.9) with (1.10), or (1.12) with
(1.10), are special cases of a broader class of conditions for linear equations to

be of the limit—circle type. For example, Knowles shows that a result of Pavljuk
[100], namely, equation (1.14) is of the limit—circle type provided (1.10) holds and

r' () r'(t)
rit)y 4 r(t)
is also in this family of conditions.

Réb [101, Section 2.3] obtained some asymptotic formulas for solutions of
equation (1.14) under the assumption that

J
withn € R — {3}.
Harris [71] also studied the limit—circle problem for equation (1.7) under
conditions similar to those described above.

}ds <oo. (1.16)

is bounded, (1.17)

r'(u) [r'@))?

r3/2(u) =4 r3/2(u)

du < 00 (1.18)

Titchmarsh [109, Theorem 5.11] or [110, Section 3] proved the following
limit—circle result.

Theorem 1.5. Ifr' > 0, r(t) - 400 ast — oo, r” is eventually of one sign,
r'(t) =0(r@)|) ast — oo for0 < ¢ < 3/2, and

L |
[ - du < 00,
0 r2(u)

then equation (1.14) is of the limit—circle case.

The following lemma due to Coppel [31] provides some insight into the
relationship between conditions such as (1.9), (1.12), (1.13), (1.15), (1.16), and
(1.18).



