RANDOM DATA: ANALYSIS AND MEASUREMENT PROCEDURES

JULIUS S. BENDAT

Mathematical and Environmental Consultant Formerly President, Measurement Analysis Corporation

ALLAN G. PIERSOL

Staff Consultant, Digitek Corporation and Lecturer in Engineering, University of Southern California

WILEY-INTERSCIENCE

a division of John Wiley & Sons, Inc. New York • Chichester • Brisbane • Toronto • Singapore

Copyright © 1971, by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Catalog Card Number: 71-160211

ISBN 0-471-06470-X

Printed in the United States of America.

20 19 18 17 16 15 14 13

PREFACE

This book is an extensive revision and replacement for the authors' early book, Measurement and Analysis of Random Data, 1966. Approximately 50 percent of the original material has been rewritten or deleted and replaced by new material. These changes reflect the technical advances that have taken place in the last five years as well as an increased awareness of pertinent matters gained through the further experience of the authors. Specifically, a broader discussion appears on statistical errors in random data analysis. An entirely new chapter has been introduced to integrate the general requirements for data acquisition, recording, preparation, qualification, and processing. The discussions of digital data analysis procedures have been greatly expanded to cover the more recent analysis techniques made feasible by the availability of fast Fourier transform algorithms. Discussions of transient and multidimensional random processes are now included. Finally, a number of illustrative examples involving actual physical data have been added to support theoretical developments. The illustrations are largely restricted to aerospace and automotive applications since these are the fields of most recent concern to the authors. The general techniques, however, are applicable to data common in many other fields including meteorology, oceanography, seismology, communications, nuclear processes, and biomedical research.

The emphasis in this new book is on the practical aspects of random data analysis and measurement procedures, with special attention to the interrelationships of the various technical disciplines involved. As before, the book is written with the primary intent of providing a convenient reference for practicing engineers and scientists. The secondary intent of providing a specialized textbook for students has been augmented by the addition of problem sets at the end of each chapter. The reader is assumed to have a basic knowledge of probability theory, statistics, and transform methods of applied mathematics.

Summaries of chapter contents appear at the beginning of each chapter. In brief, Chapters 1 through 4 present a review of basic theoretical background material needed for the developments in later chapters. Basic descriptive properties of random data are outlined in Chapter 1 while physical system response properties are reviewed in Chapter 2. Pertinent mathematical and statistical theory is summarized in Chapters 3 and 4. This review material is followed in Chapters 5 and 6 by extensive developments and formulations of input-output relationships and statistical errors in measured data. Chapter 7 outlines the overall procedures for random data acquisition and processing. Detailed procedures for analog and digital data analysis are presented in Chapters 8 and 9. The final Chapter 10 discusses some advanced ideas and procedures relevant to nonstationary, transient, and multidimensional data.

We wish to acknowledge the many contributions to this book by former associates in Measurement Analysis Corporation and Digitek Corporation. We also thank those government agencies, industrial companies, and individuals who supported our work. A special appreciation is given to Engineering Extension, University of California, Los Angeles, and to other organizations, who sponsored our presentation of short courses on this subject matter. Our final thanks extends to Teresia Piersol and Lucinda Bendat for their help in preparing the manuscript.

Los Angeles, California July 1971 JULIUS S. BENDAT Allan G. Piersol

GLOSSARY OF SYMBOLS

a, b	Sample Regression Coefficients, Arbitrary Constants
b[]	Bias Error of []
B	Cyclical Frequency Bandwidth
c	Mechanical Damping Coefficient, Arbitrary Constant
Ċ	Electrical Capacitance
C _{xy}	Covariance
$C_x(\tau)$	Autocovariance Function
$C_{xy}(au)$	Cross-Covariance Function
$C(t_1, t_2)$	Nonstationary Covariance Function
$C_{xy}(f)$	Coincident Spectral Density Function (One-Sided)
D	Time Displacement Range
e(t)	Potential Difference
	Expected Value of []
f^{-}	Cyclical Frequency
F	Cyclical Frequency Range, Statistical F Variable
F(t)	Mechanical Forcing Function
$G_x(f)$	Power Spectral Density Function Defined for Non-Negative
	Frequencies Only (One-Sided)
$G_{xy}(f)$	Cross-Spectral Density Function Defined for Non-Negative
	Frequencies Only (One-Sided)
h	Sampling Interval
h(au)	Weighting Function (Unit Impulse Response Function)
H(f)	Frequency Response Function
H(f)	Gain Factor
Im[]	Imaginary Part of []
j	$\sqrt{-1}$, Index
k	Mechanical Spring Constant, Index
K	RC Filter Time Constant, Number of Class Intervals
l	Number of Frequency Components
L	Electrical Inductance, Length
т	Mechanical Mass, Maximum Number of Lag Values
m_f	Modulation Index
n	Degrees-of-Freedom
N	Sample Size
p(x)	Probability Density Function

xiv GLOSSARY OF SYMBOLS

	List Durhahility Dansity Function
p(x, y)	Joint Probability Density Function
P(x)	Probability Distribution Function
P(x, y)	Joint Probability Distribution Function
Prob[]	Probability that []
q	Number of Inputs, Number of Sample Records
q(t)	Electrical Charge
$Q_{xy}(f)$	Quadrature Spectral Density Function (One-Sided)
r	Number of Runs, Arbitrary Factor
r_{xy}	Sample Correlation Coefficient
R	Electrical Resistance
R_s	Analyzer Scan Rate
$R_x(au)$	Autocorrelation Function
$R_{xy}(\tau)$	Cross-Correlation Function
$R(t_1, t_2)$	
Re []	Real Part of []
s	Sample Standard Deviation
\$ ²	Sample Variance
s_{xy}^{2}	Sample Covariance
$S_x(f)$	Power Spectral Density Function Defined for Both Positive and
	Negative Frequencies (Two-Sided)
$S_{xy}(f)$	Cross-Spectral Density Function Defined for Both Positive and
~	Negative Frequencies (Two-Sided)
$S(f_1, f_2)$	Generalized (Nonstationary) Spectral Density Function
S/N	Signal to Noise Ratio
ť	Time Variable, Student t Variable
T	Observation Time, Averaging Time
T_s	Analysis Time
u_n	Raw Data Values
u(x, t)	Space and Time Dependent Variable
V	Voltage Range
Var []	
W	Amplitude Window Width
x(t), y(t)	
\overline{x}	Sample Mean Value of x
$\overline{ x }$	Mean Absolute Value (Average Rectified Value) of x
X	Amplitude of Sinusoidal $x(t)$
X(f)	Fourier Transform of $x(t)$
z	Standardized Normal Variable
	Absolute Value of []
[]]	Estimate of []
α	A Small Probability, Level of Significance
β	Probability of a Type II error
Ρ	riosaomity of a rype if enter

$\gamma^2(f)$	Coherence Function
$\delta()$	Delta Function
Δ	Small Increment
E	Normalized Error
ζ θ	Mechanical Damping Ratio
θ	Phase Angle
$\theta_{xy}(f)$	Argument of $G_{xy}(f)$
μ	Mean Value
ρ	Correlation Coefficient
ho(au)	Correlation Function Coefficient
σ	Standard Deviation
σ^2	Variance
au	Time Displacement
$\phi(f)$	Phase Factor
Φ	Arbitrary Statistical Parameter
$\chi^2 \Psi$	Statistical Chi-Square Variable
	Root Mean Square Value
Ψ^2	Mean Square Value
λ	Wavelength

CONTENTS

GLOSSARY OF SYMBOLS

1	BA	SIC	DESCRIPTIONS OF PHYSICAL DATA	1
	1.1	CLA	SSIFICATIONS OF DETERMINISTIC DATA	2
		1.1.1	Sinusoidal Periodic Data	3
		1.1.2	Complex Periodic Data	4
		1.1.3	Almost-Periodic Data	6
			Transient Nonperiodic Data	7
	1.2	CLA	SSIFICATIONS OF RANDOM DATA	9
		1.2.1	······································	10
		1.2.2	Ergodic Random Processes	12
		1.2.3		13
		1.2.4		13
	1.3		IC DESCRIPTIVE PROPERTIES OF RANDOM	
		DAT		14
		1.3.1	1 () () () () () () () () () (14
		1.3.2		15
		1.3.3	Autocorrelation Functions	18
			Power Spectral Density Functions	22
	1.4		NT PROPERTIES OF RANDOM DATA	25
		1.4.1		26
			Cross-Correlation Functions	28
		1.4.3	Cross-Spectral Density Functions	31
2	RE	VIEV	W OF PHYSICAL SYSTEM	
-			NSE PROPERTIES	37
	2.1	CON	ISTANT PARAMETER LINEAR SYSTEMS	37
	2.2	BAS	IC DYNAMIC CHARACTERISTICS	38
	2.3	FRE	QUENCY RESPONSE FUNCTIONS	40
	2.4	ILLU	JSTRATIONS OF FREQUENCY RESPONSE	
		FUN	ICTIONS	42
		2.4.1	Mechanical Systems	42
				vii

		2.4.2 Electrical Systems	48
		2.4.3 Other Systems	53
	2.5	PRACTICAL CONSIDERATIONS	53
3	PR	VIEW OF STATIONARY RANDOM OCESSES THEORY	56
	3.1	PROBABILITY FUNDAMENTALS FOR RANDOM VARIABLES	56
		3.1.1 One Random Variable	56
		3.1.2 Two Random Variables	61
		3.1.3 Gaussian (Normal) Distribution	63
	3.2	STATIONARY RANDOM PROCESSES	67
		3.2.1 Correlation (Covariance) Functions	69
		3.2.2 Spectral Density Functions	75
		3.2.3 Spectral Density via Finite Fourier Transforms	82
		3.2.4 Spectral Density via Filtering-Squaring-Averaging	85
	3.3		86
	3.4	GAUSSIAN RANDOM PROCESSES	90
	3.5	LINEAR TRANSFORMATIONS AND SAMPLING	
		THEOREMS	93
		3.5.1 Linear Transformations of Random Processes	93
		3.5.2 Sampling Theorems for Random Records	95
4	RE	VIEW OF STATISTICAL PRINCIPLES	99
	4.1 4.2		99
		FUNCTIONS	102
		4.2.1 Normal Distribution	102
		4.2.2 Chi-Square Distribution	103
		4.2.3 Student t Distribution	105
		4.2.4 The F Distribution	107
	4.3	SAMPLING DISTRIBUTIONS AND ILLUSTRATIONS	110
	4.3	SAMPLING DISTRIBUTIONS AND ILLUSTRATIONS 4.3.1 Distribution of Sample Mean with Known Variance	110 110
	4.3	SAMPLING DISTRIBUTIONS AND ILLUSTRATIONS4.3.1 Distribution of Sample Mean with Known Variance4.3.2 Distribution of Sample Variance	110 110 111
	4.3	 SAMPLING DISTRIBUTIONS AND ILLUSTRATIONS 4.3.1 Distribution of Sample Mean with Known Variance 4.3.2 Distribution of Sample Variance 4.3.3 Distribution of Sample Mean with Unknown Variance 	110 110 111 112
		 SAMPLING DISTRIBUTIONS AND ILLUSTRATIONS 4.3.1 Distribution of Sample Mean with Known Variance 4.3.2 Distribution of Sample Variance 4.3.3 Distribution of Sample Mean with Unknown Variance 4.3.4 Distribution of Ratio of Two Sample Variances 	110 110 111 112 112
	4.4	 SAMPLING DISTRIBUTIONS AND ILLUSTRATIONS 4.3.1 Distribution of Sample Mean with Known Variance 4.3.2 Distribution of Sample Variance 4.3.3 Distribution of Sample Mean with Unknown Variance 4.3.4 Distribution of Ratio of Two Sample Variances CONFIDENCE INTERVALS 	110 110 111 112 112 113
	4.4 4.5	 SAMPLING DISTRIBUTIONS AND ILLUSTRATIONS 4.3.1 Distribution of Sample Mean with Known Variance 4.3.2 Distribution of Sample Variance 4.3.3 Distribution of Sample Mean with Unknown Variance 4.3.4 Distribution of Ratio of Two Sample Variances CONFIDENCE INTERVALS HYPOTHESIS TESTS 	110 110 111 112 112 113 115
	4.4 4.5	 SAMPLING DISTRIBUTIONS AND ILLUSTRATIONS 4.3.1 Distribution of Sample Mean with Known Variance 4.3.2 Distribution of Sample Variance 4.3.3 Distribution of Sample Mean with Unknown Variance 4.3.4 Distribution of Ratio of Two Sample Variances CONFIDENCE INTERVALS HYPOTHESIS TESTS CHI-SQUARE GOODNESS-OF-FIT TEST 	110 110 111 112 112 113

vin C

CONTENTS	ix
----------	----

136

170

193

4.8	CORE	RELATION AND REGRESSION PROCEDURES	125
	4.8.1	Linear Correlation	126
	4.8.2	Linear Regression	129

5 INPUT-OUTPUT RELATIONSHIPS FOR PHYSICAL SYSTEMS

5.1	SING	LE-INPUT LINEAR SYSTEMS	136
5.2	ORD	INARY COHERENCE FUNCTIONS	141
5.3	MUL	TIPLE-INPUT LINEAR SYSTEMS	147
	5.3.1	Autocorrelation and Power Spectra Relations	147
	5.3.2	Cross-Correlation and Cross-Spectra Relations	150
	5.3.3	Special Case of Two Inputs	151
5.4		LIAL AND MULTIPLE COHERENCE	
	FUN	CTIONS	153
	5.4.1	Residual Random Variables	153
	5.4.2	Partial Coherence Functions	156
	5.4.3	Multiple Coherence Functions	160
		Matrix Formulation of Results	163

6 STATISTICAL ERRORS IN RANDOM DATA ANALYSIS

6.1	DEFINITION OF ERRORS	170
6.2	MEAN AND MEAN SQUARE VALUE ESTIMATES	172
	6.2.1 Mean Values	172
	6.2.2 Mean Square Values	175
6.3	PROBABILITY DENSITY ESTIMATES	177
	6.3.1 Variance of the Estimate	178
	6.3.2 Bias of the Estimate	179
	6.3.3 Normalized rms Error	180
	6.3.4 Joint Probability Density Estimates	180
6.4	CORRELATION FUNCTION ESTIMATES	181
6.5	SPECTRAL DENSITY FUNCTION ESTIMATES	184
	6.5.1 Variance of the Estimate	186
	6.5.2 Bias of the Estimate	187
	6.5.3 Normalized rms Error	187
	6.5.4 Cross-Spectral Density Estimates	188
	6.5.5 Estimates from Finite Fourier Transforms	189

	ololo Doullate		currer runsterms	
6.6	COHERENCE	FUNCTION	ESTIMATES	

X CONTENTS

	6.7	FREQUENCY RESPONSE FUNCTION ESTIMATES— SINGLE INPUT CASE 6.7.1 Bias Errors	196 197
	<u> </u>	6.7.2 Random Errors	199
	6.8	FREQUENCY RESPONSE FUNCTION ESTIMATES— MULTIPLE INPUT CASE	204
	6.9	RECORD LENGTH REQUIREMENTS	204 208
7		NERAL CONSIDERATIONS IN DATA QUISITION AND PROCESSING	214
	7.1	DATA COLLECTION	214
	7.2	DATA RECORDING	219
		7.2.1 Magnetization-Reproduce Procedures	220
		7.2.2 Modulation-Demodulation Procedures	222
		7.2.3 Time Base Errors in Tape Recording	223
	7.3	DATA PREPARATION	227
	• • •	7.3.1 Digitization	228
		7.3.2 Preprocessing	233
	7.4	DATA QUALIFICATION	233
		7.4.1 Test for Stationarity	234
		7.4.2 Test for Periodicities	237
		7.4.3 Test for Normality	240
	7.5	DATA ANALYSIS	240
		7.5.1 Procedure for Analyzing Individual Records	240
		7.5.2 Procedure for Analyzing a Collection of Records	244
		7.5.3 Test for Equivalence of Power Spectra	249
		7.5.4 Analog Versus Digital Data Analysis	251
8	AN	ALOG DATA ANALYSIS PROCEDURES	256
	8.1	MEAN AND MEAN SQUARE VALUES	256
		8.1.1 Basic Instrument Requirements	257
		8.1.2 Practical Voltmeter Considerations	258
		8.1.3 Measurement Accuracy	259
		8.1.4 Averaging Time	260
	8.2	PROBABILITY DENSITY FUNCTIONS	264
		8.2.1 Basic Instrument Requirements	264
		8.2.2 Amplitude Resolution and Averaging Time	265
		8.2.3 Scan Rate and Analysis Time	266
	8.3	AUTOCORRELATION FUNCTIONS 8.3.1 Basic Instrument Requirements	268 268

	8.3.2	Lag Time Resolution and Averaging fime	268
	8.3.3	Scan Rate and Analysis Time	270
8.4	POW	ER SPECTRAL DENSITY FUNCTIONS	271
	8.4.1	Basic Instrument Requirements	271
	8.4.2	Frequency Resolution and Averaging Time	273
		Scan Rate and Analysis Time	274
	8.4.4	Variable Resolution Bandwidth	275
	8.4.5	Time Base Compression	276
	8.4.6	Bandpass Filter Characteristics	277
8.5	ANA	LYSIS OF JOINT DATA PROPERTIES	281
	8.5.1	Joint Probability Density Functions	281
	8.5.2	Cross-Correlation Functions	282
	8.5.3	Cross-Spectral Density Functions	283
	8.5.4	Frequency Response and Coherence Functions	284

9 DIGITAL DATA ANALYSIS PROCEDURES 286

9.1	PRE-PROCESSING OPERATIONS	286
	9.1.1 Sampling Considerations	286
	9.1.2 Arithmetic Quantities	287
	9.1.3 Trend Removal	288
9.2	DIGITAL FILTERING METHODS	291
	9.2.1 Nonrecursive Digital Filters	293
	9.2.2 Recursive Digital Filters	296
9.3	FOURIER SERIES AND FAST FOURIER	
	TRANSFORMS	299
	9.3.1 Standard Fourier Series Procedure	299
	9.3.2 Fast Fourier Transforms	300
	9.3.3 Cooley-Tukey Procedure	306
	9.3.4 Further Related Formulas	308
	PROBABILITY DENSITY FUNCTIONS	309
9.5	AUTOCORRELATION FUNCTIONS	311
	9.5.1 Autocorrelation Estimates via Direct Computations	311
	9.5.2 Autocorrelation Estimates via FFT Computations	312
9.6		314
	9.6.1 Power Spectra Estimates via Correlation Estimates	315
	9.6.2 Power Spectra Estimates via FFT Computations	322
9.7	CALCULATIONS FOR TWO RECORDS	330
	9.7.1 Joint Probability Density Functions	331
	9.7.2 Cross-Correlation Functions	331
	9.7.3 Cross-Spectral Density Functions	333

xii CONTENTS

	9.8	FREQUENCY RESPONSE FUNCTIONS AND	
		COHERENCE FUNCTIONS	337
		9.8.1 Single-Input Linear Systems	337
		9.8.2 Multiple-Input Linear Systems	339
10		NSTATIONARY, TRANSIENT, AND JLTIDIMENSIONAL DATA	344
	10.1	NONSTATIONARY RANDOM PROCESSES	344
		10.1.1 Probability Structure of Nonstationary Data	346
		10.1.2 Nonstationary Mean Values	349
		10.1.3 Nonstationary Mean Square Values	354
		10.1.4 Correlation Structure of Nonstationary Data	356
		10.1.5 Spectral Structure of Nonstationary Data	360
		10.1.6 Input-Output Relations for Nonstationary Data	364
	10.2	TRANSIENT (SHOCK) RANDOM PROCESSES	366
		10.2.1 Classification and Analysis of Transient Data	366
		10.2.2 Spectral Structure of Transient Data	366
	10.3	MULTIDIMENSIONAL RANDOM PROCESSES	371
		10.3.1 Vibrating String Problem	371
		10.3.2 Definitions of Fields and Functions	373
		10.3.3 Measurement Considerations	376
R	REFERENCES		
A]	APPENDIX		
IN	IDEX		397

CHAPTER 1 BASIC DESCRIPTIONS OF PHYSICAL DATA

Any observed data representing a physical phenomenon can be broadly classified as being either deterministic or nondeterministic. Deterministic data are those that can be described by an explicit mathematical relationship. For example, consider a rigid body which is suspended from a fixed foundation by a linear spring, as shown in Figure 1.1. Let m be the mass of the body (assumed to be inelastic) and k be the spring constant of the spring (assumed to be massless). Suppose the body is displaced from its position of equilibrium by a distance X, and released at time t = 0. From either basic laws of mechanics or repeated observations, it can be established that the following relationship will apply.

$$x(t) = X \cos \sqrt{\frac{k}{m}} t \qquad t \ge 0 \tag{1.1}$$

Equation (1.1) defines the exact location of the body at any instant of time in the future. Hence the physical data representing the motion of the mass are deterministic.

There are many physical phenomena in practice which produce data that can be represented with reasonable accuracy by explicit mathematical relationships. For example, the motion of a satellite in orbit about the earth, the potential across a condenser as it discharges through a resistor, the vibration response of an unbalanced rotating machine, or the temperature of water as heat is applied, are all basically deterministic. However, there are many other physical phenomena which produce data that are not deterministic. For example, the height of waves in a confused sea, the acoustic pressures generated by air rushing through a pipe, or the electrical

Figure 1.1 Simple spring mass system.

output of a noise generator represent data which cannot be described by explicit mathematical relationships. There is no way to predict an exact value at a future instant of time. These data are random in character and must be described in terms of probability statements and statistical averages rather than by explicit equations.

The classification of various physical data as being either deterministic or random might be debated in many cases. For example, it might be argued that no physical data in practice can be truly deterministic since there is always a possibility that some unforeseen event in the future might influence the phenomenon producing the data in a manner that was not originally considered. On the other hand, it might be argued that no physical data are truly random since exact mathematical descriptions might be possible if a sufficient knowledge of the basic mechanisms of the phenomenon producing the data were known. In practical terms, the decision as to whether or not physical data are deterministic or random is usually based upon the ability to reproduce the data by controlled experiments. If an experiment producing specific data of interest can be repeated many times with identical results (within the limits of experimental error), then the data can generally be considered deterministic. If an experiment cannot be designed which will produce identical results when the experiment is repeated, then the data must usually be considered random in nature.

Various special classifications of deterministic and random data will now be discussed. Note that the classifications are selected from an analysis viewpoint and do not necessarily represent the most suitable classifications from other possible viewpoints. Further note that physical data are usually thought of as being functions of time and will be discussed in such terms for convenience. However, any other variable can replace time as required.

1.1 CLASSIFICATIONS OF DETERMINISTIC DATA

Data representing deterministic phenomena can be categorized as being either periodic or nonperiodic. Periodic data can be further categorized as

Figure 1.2 Classifications of deterministic data.

being either sinusoidal or complex periodic. Nonperiodic data can be further categorized as being either "almost-periodic" or transient. These various classifications of deterministic data are schematically illustrated in Figure 1.2. Of course, any combination of these forms may also occur. For purposes of review, each of these types of deterministic data along with physical examples will be briefly discussed.

1.1.1 Sinusoidal Periodic Data

Sinusoidal data are those types of periodic data which can be defined mathematically by a time-varying function of the form

$$x(t) = X\sin\left(2\pi f_0 t + \theta\right) \tag{1.2}$$

where X = amplitude

 f_0 = cyclical frequency in cycles per unit time

 θ = initial phase angle with respect to the time origin in radians

x(t) =instantaneous value at time t

The sinusoidal time history described by Equation (1.2) is usually referred to as a sine wave. When analyzing sinusoidal data in practice, the phase angle θ is often ignored. For this case

$$x(t) = X\sin 2\pi f_0 t \tag{1.3}$$

Equation (1.3) can be pictured by a time history plot or by an amplitudefrequency plot (frequency spectrum), as illustrated in Figure 1.3.

The time interval required for one full fluctuation or cycle of sinusoidal data is called the period T_{p} . The number of cycles per unit time is called

4 BASIC DESCRIPTIONS OF PHYSICAL DATA

the frequency f_0 . The frequency and period are related by

$$T_{p} = \frac{1}{f_0} \tag{1.4}$$

Note that the frequency spectrum in Figure 1.3 is composed of an amplitude component at a specific frequency, as opposed to a continuous plot of amplitude versus frequency. Such spectra are called *discrete spectra* or *line spectra*.

Figure 1.3 Time history and spectrum of sinusoidal data.

There are many examples of physical phenomena which produce approximately sinusoidal data in practice. The voltage output of an electrical alternator is one example; the vibratory motion of an unbalanced rotating weight is another. Sinusoidal data represent one of the simplest forms of time-varying data from the analysis viewpoint.

1.1.2 Complex Periodic Data

Complex periodic data are those types of periodic data which can be defined mathematically by a time-varying function whose waveform exactly repeats itself at regular intervals such that

$$x(t) = x(t \pm nT_p)$$
 $n = 1, 2, 3, ...$ (1.5)

As for sinusoidal data, the time interval required for one full fluctuation is called the *period* T_p . The number of cycles per unit time is called the *fundamental frequency* f_1 . A special case for complex periodic data is clearly sinusoidal data where $f_1 = f_0$.

With few exceptions in practice, complex periodic data may be expanded into a Fourier series according to the following formula.

$$x(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos 2\pi n f_1 t + b_n \sin 2\pi n f_1 t)$$
(1.6)