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PREFACE

This book is an extensive revision and replacement for the authors’ early
book, Measurement and Analysis of Random Data, 1966. Approximately
50 percent of the original material has been rewritten or deleted and replaced
by new material. These changes reflect the technical advances that have
taken place in the last five years as well as an increased awareness of pertinent
matters gained through the further experience of the authors. Specifically, a
broader discussion appears on statistical errors in random data analysis. An
entirely new chapter has been introduced to integrate the general require-
ments for data acquisition, recording, preparation, qualification, and
processing. The discussions of digital data analysis procedures have been
greatly expanded to cover the more recent analysis techniques made feasible
by the availability of fast Fourier transform algorithms. Discussions of
transient and multidimensional random processes are now included. Finally,
a number of illustrative examples involving actual physical data have been
added to support theoretical developments. The illustrations are largely
restricted to aerospace and automotive applications since these are the fields
of most recent concern to the authors. The general techniques, however, are
applicable to data common in many other fields including meteorology,
oceanography, seismology, communications, nuclear processes, and bio-
medical research.

The emphasis in this new book is on the practical aspects of random data
analysis and measurement procédures, with special attention to the inter-
relationships of the various technical disciplines involved. As before, the
book is written with the primary intent of providing a convenient reference
for practicing engineers and scientists. The secondary intent of providing a
specialized textbook for students has been augmented by the addition of
problem sets at the end of each chapter. The reader is assumed to have a
basic knowledge of probability theory, statistics, and transform methods of
applied mathematics.

Summaries of chapter contents appear at the beginning of each chapter.
In brief, Chapters 1 through 4 present a review of basic theoretical back-
ground material needed for the developments in later chapters. Basic de-
scriptive properties of random data are outlined in Chapter 1 while physical
system response properties are reviewed in Chapter 2. Pertinent mathematical
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vi PREFACE

and statistical theory is summarized in Chapters 3 and 4. This review material
is followed in Chapters 5 and 6 by extensive developments and formulations
of input-output relationships and statistical errors in measured data.
Chapter 7 outlines the overall procedures for random data acquisition and
processing. Detailed procedures for analog and digital data analysis are
presented in Chapters 8 and 9. The final Chapter 10 discusses some advanced
ideas and procedures relevant to nonstationary, transient, and multidimen-
sional data.

We wish to acknowledge the many contributions to this book by former
associates in Measurement Analysis Corporation and Digitek Corporation.
We also thank those government agencies, industrial companies, and
individuals who supported our work. A special appreciation is given to
Engineering Extension, University of California, Los Angeles, and to other
organizations, who sponsored our presentation of short courses on this
subject matter. Our final thanks extends to Teresia Piersol and Lucinda
Bendat for their help in preparing the manuscript.

Los Angeles, California JuLius S. BENDAT
July 1971 ALLAN G. PIERSOL
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CHAPTER 1

BASIC DESCRIPTIONS OF
PHYSICAL DATA

Any observed data representing a physical phenomenon can be broadly
classified as being either deterministic or nondeterministic. Deterministic
data are those that can be described by an explicit mathematical relationship.
For example, consider a rigid body which is suspended from a fixed foun-
dation by a linear spring, as shown in Figure 1.1. Let m be the mass of the
body (assumed to be inelastic) and k be the spring constant of the spring
(assumed to be massless). Suppose the body is displaced from its position of
equilibrium by a distance X, and released at time r = 0. From either basic laws
of mechanics or repeated observations, it can be established that the following
relationship will apply.

a(f) = Xcos\/kt >0 a.1ny
m

Equation (1.1) defines the exact location of the body at any instant of time in
the future. Hence the physical data representing the motion of the mass are
deterministic.

There are many physical phenomena in practice which produce data
that can be represented with reasonable accuracy by explicit mathematical
relationships. For example, the motion of a satellite in orbit about the
earth, the potential across a condenser as it discharges through a resistor, the
vibration response of an unbalanced rotating machine, or the temperature
of water as heat is applied, are all basically deterministic. However, there
are many other physical phenomena which produce data that are not
deterministic. For example, the height of waves in a confused sea, the
acoustic pressures generated by air rushing through a pipe, or the electrical
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2 BASIC DESCRIPTIONS OF PHYSICAL DATA

b

_____Position of
equilibrium

x(t)
Figure 1.1  Simple spring mass system.
output of a noise generator represent data which cannot be described by
explicit mathematical relationships. There is no way to predict an exact
value at a future instant of time. These data are random in character and
must be described in terms of probability statements and statistical averages
rather than by explicit equations.

The classification of various physical data as being either deterministic
or random might be debated in many cases. For example, it might be
argued that no physical data in practice can be truly deterministic since
there is always a possibility that some unforeseen event in the future might
influence the phenomenon producing the data in a manner that was not
originally considered. On the other hand, it might be argued that no physical
data are truly random since exact mathematical descriptions might be possible
if a sufficient knowledge of the basic mechanisms of the phenomenon pro-
ducing the data were known. In practical terms, the decision as to whether or
not physical data are deterministic or random is usually based upon the
ability to reproduce the data by controlled experiments. If an experiment
producing specific data of interest can be repeated many times with identical
results (within the limits of experimental error), then the data can generally
be considered deterministic. If an experiment cannot be designed which will
produce identical results when the experiment is repeated, then the data must
usually be considered random in nature.

Various special classifications of deterministic and random data will now
be discussed. Note that the classifications are selected from an analysis view-
point and do not necessarily represent the most suitable classifications from
other possible viewpoints. Further note that physical data are usually thought
of as being functions of time and will be discussed in such terms for con-
venience. However, any other variable can replace time as required.

1.1 CLASSIFICATIONS OF DETERMINISTIC DATA

Data representing deterministic phenomena can be categorized as being
either periodic or nonperiodic. Periodic data can be further categorized as
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Deterministic

|
| ]

Pericdic Nonperiodic

1 I
[ ] L l

Complex Almost-
periodic periodic

Sinusoidal Transient

Figure 1.2  Classifications of deterministic data.

being either sinusoidal or complex periodic. Nonperiodic data can be further
categorized as being either “‘almost-periodic”” or transient. These various
classifications of deterministic data are schematically illustrated in Figure 1.2.
Of course, any combination of these forms may also occur. For purposes of
review, each of these types of deterministic data along with physical examples
will be briefly discussed.

1.1.1  Sinusoidal Periodic Data

Sinusoidal data are those types of periodic data which can be defined
mathematically by a time-varying function of the form

z(t) = X sin Cnfyt + 0) (1.2)
where X = amplitude
fo = cyclical frequency in cycles per unit time
6 = initial phase angle with respect to the time origin in radians
x(t) = instantaneous value at time ¢
The sinusoidal time history described by Equation (1.2) is usually referred to

as a sine wave. When analyzing sinusoidal data in practice, the phase angle 0
is often ignored. For this case

x(t) = X sin 2nfyt (1.3)

Equation (1.3) can be pictured by a time history plot or by an amplitude-
frequency plot (frequency spectrum), as illustrated in Figure 1.3.

The time interval required for one full fluctuation or cycle of sinusoidal
data is called the period T,. The number of cycles per unit time is called
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the frequency f;,. The frequency and period are related by

1
T, =~ 1.4
I 1.4

Note that the frequency spectrum in Figure 1.3 is composed of an amplitude
component at a specific frequency, as opposed to a continuous plot of
amplitude versus frequency. Such spectra are called discrete spectra or
line spectra.

x(t) Amplitude

VANANIANANES
| &{J(__\L_u__\._

[=]

Frequency

___J___

Figure 1.3  Time history and spectrum of sinusoidal data.

There are many examples of physical phenomena which produce approxi-
mately sinusoidal data in practice. The voltage output of an electrical
alternator is one example; the vibratory motion of an unbalanced rotating
weight is another. Sinusoidal data represent one of the simplest forms of
time-varying data from the analysis viewpoint.

1.1.2 Complex Periodic Data

Complex periodic data are those types of periodic data which can be defined
mathematically by a time-varying function whose waveform exactly repeats
itself at regular intervals such that

2(t) =a(t £nT,) n=1,23,... (1.5)

As for sinusoidal data, the time interval required for one full fluctuation is
called the period T,. The number of cycles per unit time is called the funda-
mental frequency fi. A special case for complex periodic data is clearly
sinusoidal data where f; = f;.

With few exceptions in practice, complex periodic data may be expanded
into a Fourier series according to the following formula.

(1) = ? + 3 (a, cos 2mnfyt + b, sin 27nft) (1.6)
n=1



