AC AND DC MOTOR CONTROL

GERALD A. MOBERG

AC AND DC **MOTOR CONTROL**

Gerald A. Moberg

Teaching Master Algonquin College of Applied Arts and Technology Nepean, Ontario, Canada

John Wiley & Sons

New York, Chichester, Brisbane, Toronto, Singapore

Photographs and illustrations in the text that are identified by this logo appear courtesy of Allen-Bradley Canada Limited.

Photographs and illustrations in the text that are identified by this logo appear courtesy of Square D Canada.

Copyright © 1987, by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by Sections 107 and 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons.

Library of Congress Cataloging-in-Publication Data:

Moberg, Gerald A. AC and DC motor control.

Includes index.

1. Electric controllers. 2. Electric motors—Starting devices. I. Title.

TK2851.M63 1987

621.46'2

86-11074

ISBN 0-471-83700-8

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

AC AND DC MOTOR CONTROL

To my dear wife Vera Evelyn, whose inspiration and encouragement made this textbook possible

PREFACE

The amount of information a tradesperson in the electrical industry is exposed to, can be monumental. With this in mind, AC and DC motor control, relay logic, and the related electrical code are presented in a manner easy to understand, and applicable to on-the-job situations.

The theory of control, operation, and design is presented clearly and concisely, and a logical approach is taken to instruct the reader "how-to" and "why."

The threads that tie the various sections of the textbook together are the hands-on approach and the requirements of the electrical code. Although the reader needs a working knowledge of basic electrical theory and terminology before making use of this textbook, the mathematical requirements are minimal.

Section 1 provides an introduction to motor control, and Section 2 sets the stage for the application of the electrical code requirements. Section 3 provides a detailed study of full voltage motor starting. Section 4 entitled "Specialty Circuits" discusses circuits and equipment that are of utmost importance. The material discussed in Section 5 is common to Sections 6 to 11, introducing time-delay and transition.

Sections 6 to 10 deal with the design, installation, and troubleshooting of power and control circuits for the various starting methods used to start large AC motors. Section 11 covers design, installation, and troubleshooting of power and control circuits for DC motors.

Summary questions have been included for all sections, with electrical code, troubleshooting, and multiple-choice

problems provided for Sections 6 to 11.

Lab Sections A and B comprise the Student's Lab Manual and have been carefully designed to coincide with the lessons presented. The manual provides the opportunity to apply the concepts of the text discussion in a meaningful way.

The solutions to the lab assignments are included in an Instructor's Manual. It is the instructor's prerogative to accept, add to, or delete any particular assignment shown in the student's manual. The text and lab manual may be used at

various levels of instruction.

A discussion of solid state control and programmable controllers is purposefully omitted as these topics require indepth coverage and should not be considered lightly. The subject of relay logic must be fully understood before moving on to programmable control.

In addition to being used in the classroom, this textbook will be useful as a reference by electricians, refrigeration technicians, maintenance personnel, electrical inspectors, electrical designers, and anyone involved with the design, installation, or maintenance of motor control and related equipment.

GERALD A. MOBERG

ACKNOWLEDGMENTS

I express my appreciation to the individuals and organizations who kindly permitted the many electrical circuits and photographs to be used in this textbook. In particular, I thank W. C. Torrance, Vice President—Marketing, Allen-Bradley Canada Limited, Cambridge, Ontario, and D. B. Langford, Commercial Vice President—Canadian Marketing, Square D Canada, Mississauga, Ontario, for the kind cooperation extended to me. Thanks are also extended to F. Kuntz, Director of Operation, Standards Division, Canadian Standards Association, Toronto, Ontario, for permitting a portion of the Canadian Electrical Code to be included in the text.

Special thanks must go to John M. Paul, CET, Senior Electrical Designer and Director, J. L. Richards and Associates Limited, Consulting Engineers and Planners, Ottawa, Ontario for encouragement during the writing of the text.

I also express my gratitude to the editor, Hank Stewart and to the many hard working members of the staff at John Wiley & Sons who helped to make this book a reality: Elizabeth Doble, Frank Grazioli, Deborah Herbert, Lilly Kaufman, Joe Keenan, Ishaya Monokoff, Kevin Murphy, and Kieran Murphy.

X ACKNOWLEDGMENTS

Without the encouragement and cooperation from my family, this book could never have been written. For this I thank my wife, Vera Evelyn, and my two sons, Ray and Don, who are both electricians.

G. A. M.

CONTENTS

SECTION 1 Motor Control 1

Introduction to Motor Control 1
Symbols 2
Overcurrent Protection versus Overload Protection 8
Wiring Diagram versus Schematic Diagram 9
Power Circuit versus Control Circuit 9
Motor Starter and Control Equipment Selection 10
Safety 14
Metric SI 15
Electrical Code Interpretation 15
Review Exercises 16

SECTION 2 Applied Electrical Code **17**

Introduction to the Electrical Code 17

Motor Service Factor 19

Branch Circuit Overcurrent Protection 20

XII CONTENTS

Conductors 20
Power Circuit Calculation 22
Review Exercises 27

SECTION 3 Full Voltage Starting **33**

Introduction to Full Voltage Starting 33
Manual Full Voltage Motor Starters 33
Magnetic Motor Starter 36
Magnetic Contactor 36
Motor Overload Protection 39
Wiring Diagram versus Line Diagram 43
No Voltage Release versus No Voltage Protection 46
Developing a Control Circuit 49
Motor Control Circuits 50
Hand-Off-Auto Control Circuit 50
Indicating Pilot Light Circuits 51
Jogging 52
Reversing Direction of Rotation of a Three-Phase Motor 54
Reversing Single-Phase Motors 59
Review Exercises 61

SECTION 4 Specialty Circuits **63**

Introduction to Specialty Circuits
Control Transformer 63
Interlocking 67
Sequence Control 70
Transposing Circuits 73
Troubleshooting 74
Ring Control Circuit 74
Plugging 74
Anti-Plugging 83
Drum Switches 86
Instantaneous Current Flow 87
Review Exercises 95

SECTION 5 Timers and Transition **99**

Introduction to Schematics 99
Purpose of Schematics 99
Reduced Voltage versus Reduced Current Motor Starting 101
Understanding Schematics 102
Pneumatic Timers 102
Coil Sequence 104
Transition 105
Review Exercises 107

SECTION 6 Autotransformer Starting 109

Introduction to Autotransformer Starting 109
Transition 111
Autotransformer Starter Power Circuits 111
Percentage Taps 113
Open Transition versus Closed Transition 114
Analyzing Control Circuits 116
High-Limit Autotransformer Protection 118
Manual Autotransformer Motor Starters 119
Power Circuit Calculation 123
Review Exercises 126
Problems 127

SECTION 7 Part-Winding Starting 133

Introduction to Part-Winding Starting 133
Power Circuits 133
Power Circuit Calculation 136
Power Circuit Installation for Various Wiring Methods 138
Review Exercises 143
Problems 144

SECTION 8 Primary Resistance Starting **151**

Introduction to Primary Resistance Starting 151
Two-Stage Primary Resistance Starting 151

XIV CONTENTS

Three-Stage Primary Resistance Starting 155
Four-Stage Primary Resistance Starting 158
Analyzing a Control Circuit 160
Manual Primary Resistance Starting 163
Power Circuit Calculation 168
Review Exercises 171
Problems 172

SECTION 9 Wye-Delta Starting 179

Introduction to Wye-Delta Starting 179
Operation of Wye-Delta Motor Starting 181
Transition 182
Power Circuit Calculation 191
Power Circuit Conductor Calculation 198
Review Exercises 202
Problems 202

SECTION 10 Secondary Resistance Starting **211**

Introduction to Secondary Resistance Starting
Primary Circuit versus Secondary Circuit 211
Wound Rotor Induction Motor Circuits 213
Resistance Units 213
Importance of the Secondary Circuit 215
Two-Stage Starting 216
Three-Stage Starting 220
Reversing Three-Stage Starting 225
Two-Stage, Two-Speed, Nonreversing Regulator 226
High-Limit (High Temperature) Protection 230
Power Circuit Calculation 230
Review Exercises 233
Problems 234

SECTION 11 DC Motor Control 241

Introduction to DC Motor Control 241
Shunt Motor 241

Series Motor 242 Compound motor 242 Current flow 243 To Reverse the Direction of Rotation of a DC Motor 243 Across-the-Line Motor Starting 245 Power Circuit 245 Single Motor Installation—Power Circuit 247 Manual Across-the-Line Motor Starter 249 Magnetic Across-the-Line Motor Starter 250 Electromagnetic Control 251 No Voltage Release versus No Voltage Protection 252 No Field Release 255 Motor Speed 255 Drum Switches 258 Double-Pole, Double-Throw Reversing Switch 264 Reversing Magnetic Motor Starter 266 Anti-Plugging 269 Reduced Voltage Starting 271 Three-Point Manual Resistance Starter 271 Four-Point Manual Resistance Starter 273 Two-Stage Reduced Voltage Starter 273 Four-Stage Reduced Voltage Starter 274 Dashpot Acceleration Resistance Starter 276 Counterelectromotive Force (CEMF) Starter 276 Two-Coil, Lock-Out Relay, Current-Limiting Starter 278 Dynamic Braking 279 Review Exercises 282

APPENDIX 291

Problems 283

GLOSSARY 303

INDEX 311

XVI CONTENTS

STUDENT LAB MANUAL

CONTENTS: Lab Section A A-1

LAB SECTION A AC Motor Control Labs A-3

Introduction to AC Labs A-3

Motor Control Workstation A-3

Lab Instructions A-6

General Instructions for Lab nos. 1 to 20 A-7

- Lab no. 1. Single-Pole Manual Motor Starter to Operate a 120-V Split-Phase Motor A-9
- Lab no. 2. Three-Pole Manual Motor Starter to Operate a Three-Phase Motor A-11
- Lab no. 3. Magnetic Across-the-Line Motor Starter to Operate a Three-Phase Motor; Two-Wire Control A-13
- Lab no. 4. Magnetic Across-the-Line Motor Starter to Operate a Three-Phase Motor; Three-Wire Control A-15
- Lab no. 5. Control Circuit, Three-Wire Control; Two-Point Control (Power Circuit Lab no. 3) A-17
- Lab no. 6. Jog Control Circuit. Start-Stop Pushbutton Station with a Selector Switch to Allow the Start Pushbutton to Also Function As a Jog Button (Power Circuit Lab no. 3) A-19
- Lab no. 7. Jog Control Circuit. Start-Jog-Stop Pushbutton Station (Power Circuit Lab no. 3) A-21
- Lab no. 8. Jog Control Circuit. Start-Jog-Stop Pushbutton Station with a Jog Relay Added to Provide Safe Operation of the Equipment (Power Circuit Lab no. 3) A-23
- Lab no. 9. Control Transformer Installed to Provide 120-V Supply to Operate a Start-Stop Control Circuit (Power Circuit Lab no. 3) A-25
- Lab no. 10. Hand-Off-Auto Control Circuit with a Single-Pole Thermostat (Power Circuit Lab no. 3) A-27
- Lab no. 11. Power and Control Circuit for a Reversing
 Magnetic Motor Starter, Size 00 (Mechanical
 Interlock Only) A-29

- Lab no. 12. Control Circuit for a Reversing Magnetic Motor Starter (Electrical Interlock in the Motor Starter, Power Circuit Lab no. 11). A-31
- Lab no. 13. Control Circuit for a Reversing Magnetic Motor Starter (Electrical Interlocks in the Remote Pushbuttons and the Motor Starter, Power Circuit Lab no. 11). A-33
- Lab no. 14. Interlocking Two Three-Phase Motors as per Instructions A-35
- Lab no. 15. Sequence Control—Ring Circuit A-37
- Lab no. 16. Semiautomatic Control Circuit, Limit-Switches, and a Pneumatic Timer A-39

Zero-Speed Switch A-41

- Lab no. 17. Plugging a Motor from One Direction Only A-43
- Lab no. 18. Plugging a Motor from One Direction Only A-45
- Lab no. 19. Plugging a Motor from Both Directions A-47
- Lab no. 20. Anti-Plugging A-49

Introduction to Lab nos. 21 to 26 A-51

- Lab no. 21. Primary Resistance Starting-Manual A-53
- Lab no. 22. Two-Part-Winding Starting A-57
- Lab no. 23. Wye-Delta Starting A-63
- Lab no. 24. Two-Stage Primary Resistance Starting A-69
- Lab no. 25. Autotransformer Starting A-75
- Lab no. 26. Two-Stage Secondary Resistance Starting A-81

CONTENTS: Lab Section B B-1

LAB SECTION B DC Motor Control Labs B-3

Introduction to DC Labs **B-3**Motor Control Workstation **B-3**Control Coordination **B-3**Lab Instructions **B-4**

XVIII CONTENTS

General Instructions for Lab nos. 27 to 31 B-6

Lab no. 27. Magnetic Across-the-Line Motor Starter to Operate a Shunt Motor, Three-Wire Control **B-7**

Lab no. 28. No Field Release Circuit Added to Lab no. 27 B-9

Lab no. 29. Two-Stage Reduced Voltage Starting to Operate a Compound Motor **B-11**

Lab no. 30. Operating a DC Motor Above Base Speed B-13

Lab no. 31. Anti-Plugging B-15