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Preface

The purpose of this book is to provide a comprehensive introduction to the applica-
tion of continuous symmetries and their Lie algebras to ordinary and partial differential
equations. The study of symmetries of differential equations provides important infor-
mation about the behaviour of differential equations. The symmetries can be used to
find exact solutions. They can be applied to verify and develop numerical schemes. One
can also obtain conservation laws of a given differential equation with the help of the
continuous symmetries. Gauge theory is also based on the continuous symmetries of
certain relativistic field equations.

Apart from the standard techniques in the study of continuous symmetries, the book
includes: the Painlevé test and symmetries, invertible point transformation and symme-
tries, Lie algebra valued differential forms, gauge theory, Yang-Mills theory and chaos,
self-dual Yang-Mills equation and soliton equations, Backlund transformation, Lax rep-
resentation, Bose operators and symmetries, discrete systems and invariants.

Each chapter includes computer algebra applications. Examples are the finding of the
determining equation for the Lie symmetries, finding the curvature for a given metric
tensor field and calculating the Killing vector fields for a metric tensor field.

The book is suitable for use by students and research workers whose main interest lies
in finding solutions of differential equations. It therefore caters for readers primarily
interested in applied mathematics and physics rather than pure mathematics. The book
provides an application orientated text that is reasonably self-contained. A large number
of worked examples have been included in the text to help the readers working indepen-
dently of a teacher. The advance of algebraic computation has made it possible to write
programs for the tedious calculations in this research field. Thus the last chapter gives
a survey on computer algebra packages.

End of proofs are indicated by #. End of examples are indicated by .

I wish to express my gratitude to Catharine Thompson for a critical reading of the
manuscript.

Any useful suggestions and comments are welcome.
email address of the author: WHSQRAU3.RAU.AC.ZA

Home page of the author: http://zeus.rau.ac.za/steeb/steeb.html
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Notation

x € R"
ACB
ANB
AUB

fog

H 8 T+

T = (.'El,fﬂz,...,zm)

ul = (ug,ug, ..., Un)

empty set

natural numbers

integers

rational numbers

real numbers

nonnegative real numbers

complex numbers

n-dimensional Euclidian space

n-dimensional complex linear space

= /-1

real part of the complex number 2

imaginary part of the complex number z

element x of R™

subset A of set B

the intersection of the sets A and B

the union of the sets A and B

composition of two mappings (f o g)(z) = f(9(z))
dependent variable

independent variable (time variable)

independent variable (space variable)

vector of independent variables, T means transpose
vector of dependent variables, means transpose
norm

scalar product (inner product)

vector product

Kronecker product, tensor product

determinant of a square matrix

trace of a square matrix

unit matrix

commutator

T

Kronecker delta with d;, =1 for j = k and §;; = 0 for j # k

exterior derivative

eigenvalue

real parameter

Grassmann product (exterior product, wedge product)
Hamilton function

Lagrange function
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Chapter 1

Introduction

Sophus Lie (1842-1899) and Felix Klein (1849-1925) studied mathematical systems from
the perspective of those transformation groups which left the systems invariant. Klein,
in his famous “Erlanger” program, pursued the role of finite groups in the studies of
regular bodies and the theory of algebraic equations, while Lie developed his notion of
continuous transformation groups and their role in the theory of differential equations.
Today the theory of continuous groups is a fundamental tool in such diverse areas as
analysis, differential geometry, number theory, atomic structure and high-energy physics.
In this book we deal with Lie’s theorems and extensions thereof, namely its applications
to the theory of differential equations.

It is well known that many, if not all, of the fundamental equations of physics are
nonlinear and that linearity is achieved as an approximation. One of the important
developments in applied mathematics and theoretical physics over the recent years is
that many nonlinear equations, and hence many nonlinear phenomena, can be treated
as they are, without approximations, and be solved by essentially linear techniques.

One of the standard techniques for solving linear partial differential equations is the
Fourier transform. During the past 25 years it was shown that a class of physically
interesting nonlinear partial differential equations can be solved by a nonlinear extension
of the Fourier technique, namely the inverse scattering transform. This reduces the
solution of the Cauchy problem to a series of linear steps. This method, originally
applied to the Korteweg-de Vries equation, is now known to be applicable to a large
class of nonlinear evolution equations in one space and one time variable, to quite a few
equations in 2 + 1 dimensions and also to some equations in higher dimensions.

Continuous group theory, Lie algebras and differential geometry play an important role
in the understanding of the structure of nonlinear partial differential equations, in partic-
ular for generating integrable equations, finding Lax pairs, recursion operators, Backlund
transformations and finding exact analytic solutions.
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Most nonlinear equations are not integrable and cannot be treated via the inverse scat-
tering transform, nor its generalizations. They can of course be treated by numerical
methods, which are the most common procedures. Interesting qualitative and quanti-
tative features are however often missed in this manner and it is of great value to be
able to obtain, at least, particular exact analytic solutions of nonintegrable equations.
Here group theory and Lie algebras play an important role. Indeed, Lie group theory
was originally created as a tool for solving ordinary and partial differential equations,
be they linear or nonlinear.

New developments have also occurred in this area. Some of them have their origins
in computer science. The advent of algebraic computing and the use of such computer
languages for symbolic computations such as REDUCE, MACSYMA, AXIOM, MAPLE,
MATHEMATICA, SYMBOLICC++ etc., have made it possible (in principle) to write
computer programs that construct the Lie algebra of the symmetry group of a differential
equation. Other important advances concern the theory of infinite dimensional Lie
algebras, such as loop algebras, Kac-Moody and Virasoro algebras which frequently occur
as Lie algebras of the symmetry groups of integrable equations in 2 + 1 dimensions such
as the Kadomtsev-Petviashvili equation. Furthermore, practical and computerizable
algorithms have been proposed for finding all subgroups of a given Lie group and for
recognizing Lie algebras given their structure constants.

In chapter 2 we give an introduction into group theory. Both finite and infinite groups
are discussed.

Lie and Lie transformation groups are introduced in chapter 3. In particular, the classical
Lie groups are studied in detail.

Chapter 4 is devoted to the infinitesimal transformations (vector fields) of Lie transfor-
mation groups. In particular, the three theorems of Lie are discussed.

Chapter 5 gives a comprehensive introduction into Lie algebras. We also discuss repre-
sentations of Lie algebras in details. Many examples are provided to clarify the defini-
tions and theorems.

The form-invariance of partial differential equations under Lie transformation groups is
illustrated by way of examples in chapter 6. This should be seen as an introduction to
the development of the theory of invariance of differential equations by the jet bundle
formalism. The Gauge transformation for the Schrédinger equation is also discussed.
We also show how the electromagnetic field A, is coupled to the wave function 1.

Chapter 7 deals with differential geometry. Theorems and definitions (with examples)
are provided that are of importance in the application of Lie algebras to differential
equations. A comprehensive introduction into differential forms and tensor fields is
given.



The Lie derivative is of central importance for continuous symmetries. In chapter 8 we
study invariance and conformal invariance of geometrical objects, i.e. functions, vector
fields, differential forms, tensor fields, etc..

In chapter 9 the jet bundle formalism in connection with the prolongation of vector fields
and (partial) differential equations is studied. The application of the Lie derivative in the
jet bundle formalism is analysed to obtain the invariant Lie algebra. Explicit analytic
solutions are then constructed by applying the invariant Lie algebra. These are the so-
called similarity solutions which are of great theoretical and practical importance. The
direct method is also introduced.

In chapter 10 the generalisation of the Lie point symmetry vector fields is considered.
These generalised vector fields are known as the Lie-Bécklund symmetry vector fields.
Similarity solutions are constructed from the Lie-Béacklund vector fields. The connection
with gauge transformations is also discussed.

In chapter 11 the inverse problem is considered. This means that a partial differential
equation is constructed from a given Lie algebra which is spanned by Lie point or Lie-
Bécklund symmetry vector fields.

A list of Lie symmetry vector fields of some important partial differential equations in
physics is included in chapter 12. In particular the Lie symmetry vector fields for the
Maxwell-Dirac equation have been calculated.

In chapter 13, the Gateaux derivative is defined. A Lie algebra is introduced using the
Gateaux derivative. Furthermore, recursion operators are defined and applied. Then we
can find hierarchies of integrable equations.

In chapter 14 we introduce Bicklund transformations for partial and ordinary differential
equations.

For soliton equations the Lax representations are the starting point for the inverse scat-
tering method. In chapter 15 we discuss the Lax representation. Many illustrative
examples are given.

The important concept of conservation laws is discussed in chapter 16. The connection
between conservation laws and Lie symmetry vector fields is of particular interest. Ex-
tensive use is made of the definitions and theorems of exterior differential forms. The
Cartan fundamental form plays an important role regarding the Lagrange density and
Hamilton density.

In chapter 17 the Painlevé test is studied with regard to the symmetries of ordinary
and partial differential equations. The Painlevé test provides an approach to study the
integrability of ordinary and partial differential equations. This approach is studied and
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several examples are given. In particular a connection between the singularity manifold
and similarity variables is presented.

In chapter 18 the extension of differential forms, discussed in chapter 7, to Lie algebra
valued differential forms is studied. The covariant exterior derivative is defined. Then
the Yang-Mills equations and self-dual Yang-Mills equations are introduced. It is conjec-
tured that the self-dual Yang-Mills equations are the master equations of all integrable
equations such as the Korteweg-de Vries equation.

The connection between nonlinear autonomous systems of ordinary differential equa-
tions, first integrals, Bose operators and Lie algebras is studied in chapter 19. It is
shown that ordinary differential equations can be expressed with Bose operators. Then
the time-evolution can be calculated using the Heisenberg picture. An extension to non-
linear partial differential equations is given where Bose field operators are considered.

Chapter 20 gives a survey of computer algebra packages. Of particular interest are the
computer programs available for the calculation of symmetry vector fields.

The emphasis throughout this book is on differential equations that are of importance in
physics and engineering. The examples and applications consist mainly of the following
equations: the Korteweg-de Vries equation, the sine-Gordon equation, Burgers’ equation,
linear and nonlinear diffusion equations, the Schrodinger equation, the nonlinear Klein-
Gordon equation, nonlinear Dirac equations, Yang-Mills equations, the Lorenz model,
the Lotka-Volterra model and damped anharmonic oscillators.

Each chapter includes a section on computer algebra applications.



Chapter 2

Groups

2.1 Definitions and Examples

In this section we introduce some elementary definitions and fundamental concepts in
general group theory. We present examples to illustrate these concepts and show how
different structures form a group.

Let us define a group as an abstract mathematical entity Miller [84], Baumslag and
Chandler [6].

Definition 2.1 A group G is a sete, g1, 92, -+ € G not necessarily countable, together
with an operator, called group composition (-), such that

1. Closure: g; € G,9; € G = g;-g; €G.

. Assosiativity: gi - (95 - 9x) = (9i - 95) - k-

2

3. Existence of identitye € G: e-g; = g; = g; - e for all g;,e € G.

4. Emistence of inverse g;' € G: g;- g7 =g;*-gi=e for all g; € G.
5

. A group that obeys a fifth postulate g; - g; = g; - g; for all g;, g9; € G,
in addition to the four listed above is called an abelian group or commutative
group.
The group composition in an abelian group is often written in the form g; + g;. The
element g; + g; is called the sum of g; and g; and G is called an additive group.

Definition 2.2 If a group G consists of a finite number of elements, then G is called a
finite group; otherwise, G is called an infinite group.

Example: The set of integers Z with addition as group composition is an infinite
additive group with e = 0. &

Example: The set {1, —1} with multiplication as group composition is a finite abelian
group with e = 1. &
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Definition 2.3 Let G be a finite group. The number of elements of G is called the
dimension or order of G.

Definition 2.4 A nonempty subset H of G is called a subgroup of G if H is a group
with respect to the composition of the group G. We write H < G.

Hence a nonempty subset H is a subgroup of G if and only if h;* - h; € H for any
hi,h; € H. For a family {H,} of subgroups of G, the intersection N, H is also a
subgroup.

Theorem 2.1 The identity element e is unique.

Proof: Suppose ¢/ € G such that € - g; = g; - ¢ = e for all g; € G. Setting g; = e,
we find e-¢/ = €¢'-e = e. But €’ e = €’ since e is an identity element. Therefore, e’ = e. #

Theorem 2.2 The inverse element g;* of g; is unique.

Proof: Suppose g! € G such that g; - g; = e. Multiplying on the left by g;° ! and using
the assosiative law, we get g;' = g7 e=g;"(gi-9) = (97" - )" gi=e-gi=g,. &
Theorem 2.3 The order of a subgroup of a finite group divides the order of the group.

This theorem is called Lagrange’s theorem. For the proof we refer to the literature
(Miller [84]).

Definition 2.5 Let H be a subgroup of G and g € G. The set
Hg:={hg : he H}

1s called a right coset of H. The set
gH:={gh : he H}

1s called a left coset of H.

Definition 2.6 A subgroup N of G is called normal (invariant, self-conjugate) if
gNg~'= N forallg € G.

If N is a normal subgroup we can construct a group from the cosets of N, called the
factor group G/N. The elements of G/N are the cosets gN, g € G. Of course, two
cosets gN, ¢'N containing the same elements of G define the same element G/N : gN =
¢'N. Since N is normal it follows that

(1N)(92N) = (91N)(92N) = 1Ng2 = 919:N

as sets. Note that NN = N as sets.
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Consider an element g; of a finite group G. If g; is of order d, where the order of a
group element is the smallest positive integer d with g¢ = g; (identity), then the different
powers of g; are ¢ (= 1), i, g7, - - - g¢~. All the powers of g; form a group < g; > which
is a subgroup of G and is called a cyclic group. This is an abelian group where the
order of the subgroup < g; > is the same as the order of the element g;.

A way to partition G is by means of conjugacy classes.

Definition 2.7 A group element h is said to be conjugate to the group element k, h ~ k,
if there exists a g € G such that

k= ghg™*.
It is easy to show that conjugacy is an equivalence relation, i.e., (1) h ~ h (reflezive),
(2) h ~ k implies k ~ h (symmetric), and (3) h ~ k,k ~ j implies h ~ j (transitive).
Thus, the elements of G can be divided into conjugacy classes of mutually conjugate
elements. The class containing e consists of just one element since

gegt=e

for all g € G. Different conjugacy classes do not necessarily contain the same number
of elements.

Let G be an abelian group. Then each conjugacy class consists of one group element
each, since
ghg™!=h, forall geG.

Let us now give a number of examples to illustrate the definitions given above.

Example: A field is an (infinite) abelian group with respect to addition. The set of
nonzero elements of a field forms a group with respect to multiplication, which is called
a multiplicative group of the field. &

Example: A linear vector space over a field K (such as the real numbers R) is an
abelian group with respect to the usual addition of vectors. The group composition of
two elements (vectors) a and b is their vector sum a+b. The identity is the zero vector
and the inverse of an element is its negative. &

Example: Let N be an integer with N > 1. The set

{ e?min/N :n=0,1,...,N-1}
is an abelian (finite) group under multiplication since
e21rin/Ne21rim/N = e27ri(n+m)/N



