N. P. Kovalenko, Y. P. Krasny, U. Krey

Physics of
Amorphous Metals




N. P. Kovalenko, Yu.P. Krasny, U. Krey

Physics of Amorphous Metals

INARAOARE

E200200858

&WILEY-VCH

Berlin — Weinheim — New York — Chichester — Brisbane — Singapore — Toronto



The Authors of this Volume

Prof. Dr. N.P. Kovalenko
Physics Department
Odessa State University
Ukraine

e-mail: npk@paco.net

Prof. Dr. Yu.P. Krasny
Mathematics Department
University of Opole

Poland

e-mail: krasnyj@math.uni.opole.pl

Prof. Dr. U. Krey

Physics Department 11

University of Regensburg

Germany

e-mail: uwe.krey@physik.uni-regensburg.de

This book was carefully produced. Never-
theless, authors, editors and publisher

do not warrant the information contained
therein to be free of errors. Readers are
advised to keep in mind that statements,
data, illustrations, procedural details or
other items may inadvertently be inaccu-
rate.

Library of Congress Card No.: applied for

A catalogue record for this book is availa-
ble from the British Library.

Die Deutsche Bibliothek —

CIP Cataloguing-in-Publication-Data

A catalogue record for this publication

is available from Die Deutsche Bibliothek.

© WILEY-VCH Verlag Berlin GmbH
D-13086 Berlin, 2001

All rights reserved (including those of
translation in other languages).

No part of this book may be reproduced
in any form — by photoprinting, micro-
film, or any other means — nor trans-
mitted or translated into a machine
language without written permission
from the publishers.

printed in the
Federal Republic of Germany
printed on acid-free paper

Composition K+V Fotosatz GmbH,
Beerfelden, Germany

Printing  Strauss Offsetdruck GmbH,
Mérlenbach, Germany

Binding ]. Schiffer GmbH & Co. KG,
Griinstadt, Germany

ISBN  3-527-40315-9



N. P. Kovalenko, Yu. P. Krasny, U. Krey
Physics of Amorphous Metals



Preface

This book deals with amorphous metals, which are systems that nature does not
form very often, but which have interesting properties. Usually, metals are poly-
crystalline or even single-crystalline, i.e. if one starts at high temperatures in the
liquid state with one metallic compound only and reduces the temperature slowly
below the melting point, there will be crystallization. But it has been found experi-
mentally that in cases where the melt is an alloy of either (i) two or more metallic
compounds, e.g. Cu and Zr, or Mg and Ca, or (ii) of one or more metallic com-
pounds, e.g. 80% Fe, plus one or more so-called glass formers such as B, P, Si, C
or other so-called metalloids, then a sufficiently rapid quench from the tempera-
ture of the liquid state to much lower temperatures, which may be in the region
of room temperature, typically leads to so-called amorphous metals, with a meta-
stable structure of very long lifetime — months, years or decades. These amor-
phous metals are characterized at least approximately by the fixed ‘glassy struc-
ture of a metallic liquid, frozen from just above the melting temperature. There-
fore, amorphous metals are also called ‘glassy metals’, ‘metallic glasses’ or ‘met-
glasses’, and should be distinguished from amorphous semiconductors, e.g. amor-
phous Si or amorphous Ge, not only because ‘metglasses’ behave as metals and
are often magnetic or even supraconducting, but also because of their different
structure: usually, metglasses have a very high coordination number of ~12, as
densely packed crystalline metals as Ni, Cu or Co would have, although in those
crystalline systems the density of the systems is still higher (typically 14%, see be-
low). In contrast, amorphous Si or Ge are only tetrahedrally coordinated (i.e. the
coordination number is only 4), which is of course closely related to their differ-
ent ‘semiconducting’ behavior.

The book is centered on the theoretical description, understanding and deriva-
tion of the properties of glassy metals. However, advantages and disadvantages of
the systems with respect to applications will become clear. Concerning these
points one should note that the systems are not simply typical metals, but due to
the structural properties their metallic resistivity is roughly one or two orders of
magnitude higher than that of the typical crystalline counterparts, namely of the
same order of magnitude as in the liquid state just above the melting point. At
the same time, amorphous metals with Fe, Co and Ni are usually magnetic and,
in connection with the high resistivity, the material is interesting for voltage trans-
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formers, because of their lower electrical losses compared with crystalline Fe-Si
transformer material. Thirdly, it is advantageous that the typical pinning centers
for magnetic domain walls of crystalline metallic magnets, namely dislocations
and grain boundaries, are missing (although a continuous distribution of sources
of internal stresses also exists in the amorphous metals). This is the reason for
the extremely soft-magnetic properties of some of the glassy magnetic materials pre-
pared by industry, which are used for shielding external magnetic fields very effi-
ciently.

However, the applications of the systems are not at the center of this book,
which instead stresses the theoretical description of the relevant properties, as al-
ready mentioned. This description introduces the relevant theoretical techniques
in a self-consistent way, and therein it goes beyond the introductory level. How-
ever, we try to keep the applications in mind, whenever possible, and mention the
advantageous and disadvantageous properties. Furthermore, although our book
emphasizes the analytical methods in the theory of amorphous systems and goes
as far as to the Eliashberg and Nambu-Gorkov equations in the theory of amor-
phous superconductivity, we also discuss some of the more recent numerical work,
i.e. computer simulation methods based on the so-called ‘molecular dynamics’
and similar techniques, and draw qualitative and semiquantitative conclusions
which may be useful not only for the theorist.

Odessa/Opole/Regensburg, January 2001 N.P. Kovalenko
Yu.P. Krasny
U. Krey
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1
On the Structure of Amorphous Metals

1.1
Introduction: Preparation of Amorphous Metals, and Simple Models

Most solids exist in the crystal state. However, at room temperature, there are also
amorphous solids of essentially two kinds: (i) semiconducting systems, which usual-
ly exist as tetrahedrally coordinated networks, and (ii) amorphous metallic alloys,
which appear in a state that is essentially similar to a frozen picture of a dense
metallic liquid composed of at least two different alloy components. (Pure metals
apparently do not form a stable or metastable amorphous state, except as films on
very cold substrates, e.g. at He temperatures and apparently only with small
amounts of impurities (Felsch, 1969, 1970a,b; Leung and Wright, 1974).)

Systems of type (i), e.g. amorphous Si or amorphous Ge, are not the focus of
this book. Instead, we concentrate on systems of type (i), which are often called
‘glassy metals’, metallic glasses (‘metglasses’), or ‘amorphous metals’. There are a
vast number of such systems, which can be:

(a) composed of at least two different metals, e.g. amorphous Cu,_,Zr, alloys,
which can be prepared in a vast concentration range from x~0.35 to x~0.75
(or hydrogenated Fe, ,Zr,H, or Mg, ,Ca, alloys, and many other species), or

(b) composed of at least one metallic and one non-metallic ‘metalloid’ compound,
as e.g. amorphous Fe;_,B,, which exists in the composition range between
x=0.15 and 0.33. These systems are stable in the amorphous state at room
temperature, or at least metastable, with lifetimes of up to years or decades,
and they can be prepared in different ways.

Some preparation methods are mentioned here, namely

* the so-called ‘splat-cooling’ technique, in which an ‘anvil with a droplet of the
melt on it is hit with a kind of piston — the droplet is quenched immediately to
a flat amorphous film;

e the so-called ‘melt spinning’ method, which is generally applicable to industrial
and technical mass production, but is also commonly used in research insti-
tutes. The melt is continuously produced by induction heating and dropped in
a continuous flow onto a rotating Cu wheel of typically 1 m diameter, such that
a continuous ribbon of the amorphous metal is tangentially ejected from the
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wheel with a high velocity of typically 2 m/s. The thickness of the ribbons pro-
duced in this way is typically 50 um, and they are up to 2 cm wide;

e the so-called ‘solid-state reaction’ technique, in which after having produced
powders of the alloy components by milling techniques, one can even prepare
bulk amorphous metals (Samwer et al., 1994). This technique has apparently
not yet found widespread technical applications, whereas the amorphous mag-
netic ribbons produced by melt spinning are actually used for the mass produc-
tion of active and passive magnetic sensor materials (Hilzinger, 1990).

Other techniques that also deserve mention are the methods of sputtering and the
method of laser glazing.

In addition, large-scale applications of amorphous material, which would have
led to a replacement of the conventional FeSi transformer magnets, looked pro-
mising in the 1980s, but to date the conventional systems have won the economic
competition. In fact, in addition to the difficulty of preparing bulk amorphous me-
tals directly, one of their main shortcomings is the ‘aging phenomenon, i.e. the
fact that the material properties of amorphous metals may deteriorate signifi-
cantly after cycle times of typically several months or years. As a consequence, the
ultra-soft magnetic properties of the shielding material can only be kept for long
periods of time if the system is treated very cautiously, both thermally, magneti-
cally and mechanically.

Now let us consider the stability of the amorphous state and questions of model
formation. Two of the important physical questions related to these problems con-
cern the ‘glass forming ability’, and the stability against crystallization. As already
mentioned, and as is also known from the conventional non-metallic window
glasses, the amorphous state is typically only metastable, and we observe the
above-mentioned aging properties. These are of course preparation-dependent,
and certain ‘annealing procedures’, which usually follow the production process,
are essential for the quality and stability of industrial products (Hilzinger, 1990).
The question therefore naturally arises as to when and why amorphous systems
are formed at all.

There are various theoretical aspects to this question, which are intimately re-
lated to the problem of modeling the atomic structure of amorphous metals. For
example:

(i) the role of deep eutectics

For liquid alloys at a given temperature there exists usually a so-called miscibility
gap, l.e. a range Ax of concentrations, where the liquid alloy A;_,B, coexists with
separate A resp. B liquids. Considering liquid-vapor phase transitions as an analo-
gon to the demixing transition, the analogon to the miscibility gap is the coexis-
tence region between a single-component liquid and the corresponding vapor
phase, and the density range of coexistence, Ap, plays a role corresponding to that
of Ax. Outside the miscibility gap, a liquid alloy phase is not thermodynamically
stable. With decreasing temperature of the melt, Ax becomes gradually smaller
and smaller, until at a low, so-called ‘eutectic temperature’, which may approach
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the range of room temperature, a single so-called eutectic composition x, remains.
In this eutectic concentration region the glass-forming ability after a rapid quench
is particularly high, which seems natural, but is not easy to formulate quantita-
tively.

(ii) hard-sphere models

There are also ‘steric’ aspects (i.e. in contrast to energetic ones) that favor amorphi-
zation. One of the first models to describe amorphous alloys was the so-called Ber-
nal model, i.e. a dense random packing of hard spheres (Bernal, 1959, 1960): If we
try to compress a large set of hard spheres, i.e. taken from ball bearings, into a
box, e.g. 80% of the atoms resembling Fe in its atomic radius, and 20% with a ra-
dius corresponding to B, then we usually end up with a metastable state. Finney
and coworkers have produced such models by hand (Finney, 1970) and found that
the packing fraction f= N(4nr’/3)/V of such models, if we are dealing with ficti-
tious one-component cases, are somewhat lower (typically ~14%) than those of
crystalline face-centered or hexagonal crystals, namely 0.6366+0.0004 instead of
0.74 (Finney, 1970). Here r is the hard-core radius of the atoms, N the number of
balls, and V the volume of the box considered. Furthermore, it has been found
that in such models there is a sufficient number of small holes, into which 20%
small ‘B spheres’ would fit. More details will be discussed in the following section.

1.2
The Radial Distribution Function and the Structure Function

A more complete picture of the structure of amorphous systems can only be ob-
tained by the set of averaged n-point correlation functions for n=2, 3, 4,...,
namely

Fn(Rl, Rz, wmay Rn) = 5(1’1 — R])é(rz — R2) o % .(S(I'n — Rn) (121)

Here, the r; denote the positions of the n atoms, J(r) is Dirac’s Delta function and
the overbar denotes an average over an ensemble of amorphous systems with the
same statistical properties as the considered one. We assume in the following that
this ensemble can be obtained by ‘self-averaging, i.e. in the so-called thermody-
namic limit of infinite system size, V— o0, the system can be divided into infinite
blocks, which represent the samples of the ensemble. Thus we also assume statis-
tical homogeneity of the system, i.e. the averages and averaged correlation func-
tions considered are assumed to be translationally invariant.

The most important of the averaged correlation functions in Eq. (1.2.1) is the
so-called Radial Distribution Function p(r), and the so-called Partial Radial Distribu-
tions pap(r) (see below), which can be derived from Eq. (1.2.1) for r:=|r;—1,| with
n=2. These functions appear throughout the following chapters, when the ther-
modynamics of vibrational, magnetic, electronic and superconducting excitations
in amorphous metals are considered, and this is why we emphasise them here.
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In fact, p(r) and pep(r) can most easily be determined for computer models of
amorphous systems, just by counting the numbers of atoms of kind B that are at
a distance between r and r + dr from a fixed atom of kind @, and averaging over
all atoms a, see below. Experimentally, their determination is somewhat more in-
volved and involves diffraction experiments utilizing X-ray diffraction, electron dif:
fraction or neutron diffraction, or combinations thereof. Namely, for the different
diffraction sources, the scattering amplitudes f, (see below) are different, such that
from the differences of the scattering cross-sections do/dQ obtained by three dif-
ferent experiments we can usually determine the partial radial distribution func-
tions pup(r) for binary amorphous alloys, i.e. with a, =1, 2. (With neutron scatter-
ing, we can also use amorphous alloys of the same composition, but with differ-
ent isotopes of the compounds considered, because these isotopes sometimes also
have very different neutron scattering lengths.)

The description of the diffraction experiments, and their relation to the radial
distribution functions, is as follows.

Let a monochromous beam of X-ray photons, or electrons, or neutrons, impinge
onto our amorphous sample of volume V and particle number N. The monochro-
mous beam is assumed to have a current-density Jo (=dNp/(dt cm?) and an in-
coming wavevector k; =ke,, where 1 =2n/k is the wavelength or de Broglie wave-
length of the particles and e, the direction of the flow (the z-direction without re-
striction). The particles are scattered elastically, and a counter, which is at a very
large distance r from the sample, counts the number N of scattered particles
with polar scattering angles between 0 and 0 + d0, and azimuthal ones between ¢
and ¢+dg. The solid angle d@Q covered by the counter is thus given by
dQ =sin 0 d0 d¢. From the number of counts per second, dN/dt, by the counter,
we can thus determine experimentally the so-called differential cross-section:

(do/dQ) = (dN,/dt)/(jod?2) (1.2.2)

Theoretically, do/dQ is given by the following expression:

(do/d2)(q) = [3F, fi expliq(r — 1) (12.3)

Here, as already mentioned, r is the position of the counter and r; are the positions of
the scattering atoms in the amorphous sample; [r] is always >> |ry|, i.e. the center of
mass of the amorphous sample can be taken as the origin. The vector q = kqk; is the
difference between the wavenumbers of the scattered particle before and after the
scattering. Finally, for the magnitude we have |q| = (4m/2) sin (0/2), and the f; are
the complex scattering amplitudes.

Now, by evaluation of Eq. (1.2.3), it follows that for an amorphous alloy with
a=1,2,..,n different alloy components:

(do/dQ) = N Y~ cucyfsfy [ dPrexpliq 1)pep(r) (1.2.4)

a,f=1
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Here the product cgdnr’drp,p(r) is the expectation value of the number of p atoms
that have a distance between r and r + dr from a given a atom. Thus, for r— oo,
Pap(r) converges to po:=(N/V)=:1/vo, i.e. the reciprocal of the specific volume, in-
dependent from o and B, and for the Fourier transform of p,g(r), we obtain

Sup(q) = [ d’rexp(iq - r)pap(r) = [(21)’ /00}0(q) + aap(4) (1.25)

Here a,p(q) is the so-called Partial Structure Function, which is often used in the
following chapters. According to Eq. (1.2.4) we thus have

(do/dR) = NXgcacpfy fpSup(q) (1.2.6)

In this way, from the experiments, S,p(q) and thus pep(r) can be determined. By
the spherical symmetry of both quantities, we can reduce the necessary integra-
tions to one-dimensional ones from 0 to co, namely

aup(q) = 47 / rdrsin(qr) /(@) pap(r) — pol (12.7)
0
pap(r) = po + (222) " / Pdgfsin(gr)/(ar))aap(a) (12.8)
0

As can be seen from Eq. (1.2.8), it is sometimes useful to plot the following ‘re-
duced radial distribution’ G,g(r), which is used in some of the following figures:

Gap(r):= 4mr[pyp(r)po] (1.2.9)

which for g # 0 is related to a.p(q) by

oup(@) = (1/g) [ drGup(r) sin(ar) (1.2.10)
0
and
Gup(r) = (2/x) [ dalgoup(a)]sinan (1.2.11)

Figures 1.2.1, 1.2.2 and 1.2.3 present the partial distribution functions p(r) and
the structure functions S(g), which von Heimendahl (1979) calculated from a com-
puter simulation for the structure of a two-component metallic glass, namely for
MgzoZnso. The calculation produced a ‘relaxed hard-core model of 800 atoms;
such models are often more simply called ‘soft-core models. In the calculation,

5
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Fig. 1.2.1  The pair potentials used in the
computer simulation of von Heimendahl
(1979). This simulation produced a ‘soft-core
model’ for Mg;0Znso with 800 atoms in a box
with periodic boundary conditions. In the cal-
culation, three effective pair potentials were
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used, calculated by J. Hafner (Hafner, 1976,
1977a,b) from the general non-local ‘pseudopo-
tential theory’ described in Chapter 2. In this fig-
ure, the ‘deepest’, ‘second deepest’ and ‘most
shallow’ lines, respectively, represent the pair po-
tentials for MgMg, Mg-Zn and Zn-Zn

Fig. 1.2.2  The total ‘radial distribution
function’ p(r) for the amorphous model
system Mg;oZn;q according to the compu-
ter simulation of von Heimendahl (1979).
Parts b and c represent the partial radial
distribution functions corresponding to the
Mg-Mg and Zn-Zn correlations respectively
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Fig. 1.2.3 The corresponding ‘structure func- (1979). Parts b and c represent the partial radial
tion’ S(g) to Fig. 1.20.2 for the amorphous distribution functions and partial structure func-
model system Mg;0Zn3 according to the tions corresponding to the Mg-Mg and Zn-Zn
computer simulation of von Heimendahl correlations respectively

three effective pair potentials were used, calculated by J. Hafner (Hafner, 1976,
1977a,b) from the general ‘non-local pseudopotential theory described in Chapter
2. Figure 1.2.1 shows these pair potentials: in this figure, the ‘deepest’, ‘second
deepest’ and ‘most shallow’ lines, respectively, present the pair potentials for Mg-
Mg, Mg-Zn and Zn-Zn. Figure 1.2.2 depicts the total radial distribution (part a)
and the partial distribution functions pug.mg(r), part b, and pz, za(r), part c. Final-
ly Fig. 1.2.3 (a,b,c) shows the corresponding ‘structure functions’ a.p(q) (= Sup(q)
for g # 0).

1.3
Structural Models of Glassy Metals

As already mentioned in Section 1.1, there are many models constructed so as to
yield a sufficient description of metallic glasses. The earliest models were in fact
constructed ‘by hand’, i.e. the Finney model (Finney, 1970), one of the most prom-
inent DRPHS models (DRPHS = Dense Random Packings of Hard Spheres).

Figure 1.3.1 shows the total ‘reduced radial distribution function' G(r) for Fin-
ney’s hard-sphere model, compared with experimental results.

Here the first pronounced peak corresponding to the nearest-neighbor shell and
the hard-core condition is most clearly visible, as is the following pronounced
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Fig. 1.3.1  Comparison of the
. (b) reduced radial distribution
function G(r) obtained from
Finney's original ball bearing
model (the histogram) with
experiments for amorphous
NiseP,4 (Cargill, 1975, p. 304)
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minimum, followed by a second, less pronounced ‘split maximum, corresponding
to the shell of second- and third-nearest neighbors. However, the shortcomings of
the DRPHS model can also be clearly seen by the comparison with experiment.
Namely, in the DRPHS model, because of the hard-core condition, there are no
Fe atoms with distances less than 2r,, where r, is the hard-core radius correspond-
ing to Fe, namely r,=2.86A, whereas in reality (ie. for the solid line in
Fig. 1.3.1, and also in Fig. 1.3.2) the first peak, corresponding to the shell of
‘nearest neighbors’, although being quite pronounced, is clearly somewhat
‘smeared’ over a small but finite range, and also the two smaller peaks in the fol-
lowing shell corresponding to second- and third-nearest neighbors are different in
reality: in the DRPHS model, the second of these two peaks is clearly more pro-
nounced, which is the opposite of reality (see Fig. 1.3.2).

Furthermore, in the liquid state of metallic glasses, as opposed to the amor-
phous one, there is no splitting at all (Fig. 1.3.3), but otherwise the radial distribu-
tions for liquid metals just above the melting point are quite similar to those of
the amorphous state, which justifies the “frozen liquid’ picture mentioned above.

These observations give a clear hint that hard-core models are oversimplified
and should be used with care. At least the positions of the atoms in such models
should be energetically ‘relaxed” in realistic inter-ionic potentials, e.g. the self-con-
sistent pseudopotentials discussed in the next chapter. The improved models
based on such procedures could be termed DRPSS models (i.e. Dense Random
Packings of ‘Soft Spheres’), or simply soft-sphere models.

For liquids there is a well-known analytical treatment of the radial distribution
function in hard-sphere approximation, the Percus-Yevick approximation (Percus
and Yevick, 1958). We do not describe this here, because there are several compre-
hensive reviews on it available (e.g. Kovalenko and Fisher, 1973). Results from
this approximation are shown in Fig. 1.3.4, which should be compared with those
of Fig. 1.3.3.

Because the agreement is reasonable, even with the results for the amorphous
metals in Fig. 1.3.2, and because there are further approximations made in the



Fig. 1.3.2 Interference function /(k),
=5(g) in the text (upper part), and ra-
dial distribution function W(r)=p(r)/
po(r) (lower part) for amorphous films
of different metals, after Cargill (1975),
p. 262. The results for amorphous Ni
and Fe (a,b) are taken from Ichikawa
(1973), and for the amorphous films of
Ni, Co, Ag and Au (a’,c’,d’,e’) from Da-
vies and Grundy (1971, 1972)
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analytical treatment of the excitations discussed in later chapters, the ‘liquid-like’
Percus-Yevick radial distribution function will be used frequently below.

As just mentioned, to obtain more realistic models of metallic glasses as a pre-
requisite for calculations of vibrational, spin, electronic or superconducting excita-
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Fig. 1.3.3  The ‘structure function’ S(g) of lig-
uid Na is compared with results from a ‘mo-
lecular dynamics’ simulation (hard-sphere

model) corresponding to high densities, i.e. with
a filling factor of the hard spheres of = 45% of
the volume (after Balescu, 1975, p. 288)
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