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Preface

This book was written for second-year engineering and science
students. The intended audience and my own experience as an engineering
student have influenced the writing in three ways. First, applications
motivate and illustrate the mathematics throughout. Second, methods are
presented before theory wherever possible, so that the student approaches
generalizations with a body of examples in mind. Third, most theorems are
not proved, although they are explained, illustrated, and interpreted.

Two semesters of calculus is the required background. Infinite series,
for Chapters 4, 9, and 10, and partial derivatives, for Chapter 10 and a few
scattered sections, can be studied concurrently. Except for the bare facts
about determinants, no linear algebra is needed in the bulk of the book.
However most of Chapter 7, Systems of Linear Differential Equations,
assumes a working knowledge of matrices. Appendix A is a self-contained
text on matrix algebra and systems of algebraic equations for review or class
presentation.

To accommodate different courses, curricula, teachers, and students,
I have made this book as flexible as possible. Chapters 1-3 are to be taken in
order; 4-8 are independent of each other; 9 and 10 form a sequence, and
both draw on 4. Within each chapter, the material is arranged to allow dif-
ferent stopping points. The Instructor’s Manual contains the particulars of
chapter and section dependence as well as other useful information. Topics
were chosen with a view to the current and probable future demands of the
various engineering and science disciplines. There is enough material to
design a two-semester course with any one of several different biases—
toward classical applications, for instance, or systems and control, or com-
putation.

The book has a number of special features that enhance its value as a
text and reference.

* Over 225 examples illustrate definitions and theorems (in both the
positive and negative senses) and guide the student in the use of new
methods.
* More than 1500 exercises are provided, ranging from drill to novel ap-
plications, extensions of methods and theory, and previews of future
material.
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* Solutions of odd-numbered exercises are in the back of the book.
Answers to even-numbered exercises are available. Some 300 exeércises are
worked in detail in the Student’s Partial Solutions Manual written to ac-
company this text.

* Miscellaneous exercises conclude each chapter. Some of these are drill
exercises for test preparation. Other problems require several sections’
results, develop new methods, or take old methods in new directions.

¥ Notes and references at the end of each chapter comment on the sub-
ject from a broader viewpoint, telling why and to whom it is important,
how it is related to others and where to find out more about it. A biblio-
graphy is at the end of the book.

* Each chapter has at least one section on an advanced or unusual topic.
For example, Section 3.6 states and proves some theorems on boundedness
and oscillation; Section 8.6 is an introduction to Jacobian elliptic functions.
* Appendix B, Mathematical References, lists some useful formulas and
theorems from trigonometry, algebra, and calculus.

It is my pleasure to acknowledge the many contributions, through
conversations and helpful comments, of friends and colleagues including
Mark Ablowitz, Heino Ainso, Bill Briggs, Axel Brinck, Susan Conry,
George Davis, Larry Glasser, Charles Haines, Abdul Jerri, Victor Lovass-
Nagy, Robert Meyer, Richard Miller, Gustave Rabson, Harvey Segur, Eric
Thacher and the late R.G. Bradshaw. I also wish to thank the following
reviewers:

Gregory F. Lawlor, Duke University

Theodore Burton, Southern Illinois University

B.J. Harris, Northern Illinois University

Wayne Dickey, University of Wisconsin

Richard Brown, Kent State University

Herbert Synder, Southern Illinois University

Robert E. Turner, University of Wisconsin

Beverly West, Cornell University

Erol Barbut, University of Washington

Euel W. Kennedy, California Polytechnical State University
Edward Scott, University of Illinois

Wlodek Proskuwoski, University of Southern California
Dennis R. Dunninger, Michigan State University
William Gilpin, Old Dominion University

C.H. Cook, University of Maryland

Gene M. Ortner, Michigan Technological University
Allan M. Krall, The Pennsylvania State University
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1

First-Order

1.1

Introduction

Example 1

Equations

In many important physical problems the development in time of a
particular quantity is controlled by a fundamental physical law. A good
example is provided by a chemical solution in a “‘stirred-tank chemical
reactor.” This is a tank containing a solution, initially at a particular
concentration. When the period of observation begins, solution flows in
continuously at a given rate and concentration, and the contents of the
tank are drawn off continuously at a given rate. There is supposed to be a
stirring device in the tank to ensure that the concentration of the solution
is uniform throughout the tank at any time. It is usually required to find
the amount (mass) of solute in the tank as a function of time. The
equation governing this quantity is found by applying the law of conserva-
tion of mass in this form:

accumulation rate = rate in — rate out. 1.1

A 200-liter tank is initially filled with brine (a solution of salt in water) at
a concentration of 2 grams per liter. Then brine flows in at a rate of 8
liters per minute with a concentration of 4 grams per liter. The well-
stirred contents of the tank are drawn off at a rate of 8 liters per minute.
Express the law of conservation of mass for the salt in the tank.

Let u(t) be the mass of salt in the tank, measured in grams. The rate
at which salt enters is

. 8liter 4g 32¢
rate in = ——— X — = —— .,
min liter min

The rate at which salt leaves is

8liter _u(g _ 0.04g
min ~ 200liter  min

rate out = (i)

The rate at which salt accumulates in the tank is just du/dt, measured in

1



1 First-Order Equations

grams per minute. Thus the mass balance is

accumulation rate = rate in — rate out
du 32g 0.04u(r)g
dt min min

The units of measurement are included as a check on consistency. They
are usually dropped at this stage, and the mass balance equation is written
du

T = —0.04u + 32, o<t 1.2)
The inequality, 0 < t, reminds us that the equation is valid after the
experiment starts.

Definition 1.1

Many variants are possible in problems of this type: the inflow and
outflow rates might be different or nonconstant, a chemical reaction might
take place in the tank, the solution might become saturated, and so on. But
in any event the accumulation rate term will cause the derivative of the
unknown quantity u to appear in the mass balance equation. This brings
us to the subject of our study.

A relationship between a function and its derivatives is called a differen-
tial equation. The highest-order derivative that appears is called the order
of the differential equation.

The mass balance equation of Example 1, Eq. (1.2), is a first-order
differential equation. We shall see many more examples of first-order
equations in this chapter. In later chapters we shall see that certain simple
mechanical or electrical systems can be described by second-order equa-
tions such as
d’u du
— +6— + 10u = 2cost.
dr* dt
More complex systems may require differential equations of yet higher
order.

Our objective, wherever possible, is to solve differential equations. Let
us symbolize a general first-order equation as
du

E = F(t, u).
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1.1 Introduction 3

Then a solution of this differential equation on an interval o <t < Bisa
function u(t) that has a first derivative and satisfies the differential
equation for all ¢ in the interval @ < t < @. That is, substitution of u(t)
into the differential equation leads to an identity,

d
o u(t) = F(t, u(y)), a<t<p.

The differential equation of Example 1,

du = —0.04u + 32,
dt

has for one solution the function
u(t) = 800 + 70e %% 1.3
over the interval —oo < t < oo, To confirm this claim, first note that the
given function has a first derivative, which is
%u(t) = 70(—0.04)e 0% = —2 8¢ 004
Substitution of u(t) and its derivative into the given differential equation
leads to the identity
—2.8¢7%%% = —0.04(800 + 70e°%*) + 32, —o0 <t < o,

It is also correct to say that the more general expression
u(t) = 800 + ce %%, 1.4

in which ¢ is an arbitrary constant, is a solution of the differential
equation. Indeed, substitution of this function into the differential equa-
tion again gives

—0.04ce %% = —0.04(800 + ce %) + 32,

which is true for all ¢t and any choice of the constant c.

Returning now to the chemical reactor problem of Example 1, we
seem to have an unexpected problem: too many answers. Since Eq. (1.4)
is a solution of our differential equation for any value of ¢, and each
different value of ¢ corresponds to a different function, we have an
infinite family of solutions of Eq. (1.2). Yet the physical problem seemed
perfectly definite, and we expect a single, definite solution.

This difficulty disappears, however, when we note that there is
information given in Example 1 that we have not used. The initial
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concentration in the tank was given to be 2 grams per liter, which
translates to an initial amount of 400 grams. In terms of the function u,
we would state this condition as

u(0) = 400. 1.5)
Now if we set t = 0 in the function of Eq. (1.4), we get
u(0) = 800 + ce’® = 800 + c.

This quantity should equal 400. Thus ¢ = —400, and the function we
seek is

u(t) = 800 — 400e™%*, (1.6)

This function satisfies both the differential equation (1.2) and the aux-
iliary condition (1.5).

A first-order differential equation, together with a condition on the value
of the solution at some point (an initial condition) is called an initial value
problem. A solution of the differential equation that also satisfies the
initial condition is a solution of the initial value problem. A general
first-order initial value problem is denoted by

du

P F(,uw),  ult) = q.

Example 3

A substantial part of any course in calculus is actually spent in
dealing with the problem of solving first-order differential equations in
which the right-hand side is a known function of ¢ alone:

‘;—’t‘ — (). .7)

In words: the derivative of an unknown function is given, and the
function is to be found. A solution of this problem is any antiderivative or
indefinite integral of f(tf). The theorems of elementary calculus assure us
that the most general solution is obtained by adding a constant to any
solution. If an initial condition is imposed, the constant can be chosen to
make the solution satisfy it.

Solve the initial value problem

du
a_ ¢
u(0) = 5.

t.=> 0,



1.1 Introduction 5

The right-hand side of the differential equation is a known function
of t. By “integrating both sides” of the differential equation we find

e —2t

2

u(t) = —

as a solution of the differential equation. In order to fulfill the initial
condition we must have

u(0) = 5,

—e° 1
—+c=—=+4c¢c=5.
> c > c 5

Thus ¢ = 4!, and the solution of the initial value problem is

e—2t

2

u(t) = %—

Example 4

Some functions f(tf) do not have an antiderivative that can be
written down in closed form. In this case we must leave the integration of
f(t) to be done. To make our solution of the differential equation

du
@ f(®

perfectly definite, we write it as
u(t) = ¢ + j f(2) dz. (1.8

The lower limit, a, is any convenient fixed value (usually the initial value
of t in initial value problems). We have used z as the dummy variable of
integration; any other letter that is not busy elsewhere could be used
instead. Flementary theorems of calculus assure us that Eq. (1.8) is a
continuous function whose derivative is f(t) at any t where f is continu-
ous. We also use the form (1.8) to represent the solution of the differen-
tial equation when we do not want to specify the function f. However, this
should not be used as a “formula for solving” the differential equation
(1.4). 1t is much easier and more natural to think of integrating both
sides.

We attempt to solve the initial value problem

du

I e, u(0) = 1.
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There is no function expressible in terms of polynomials, exponentials,

—t2,

etc., whose derivative is e™"; therefore we must leave the integration to
be done. We express the solution of the differential equation as

t

u(t) = J e ¥ dz + c.
0

The initial condition can be satisfied by setting ¢ = 0 in the expression
above and equating u(0) to 3:

0

u(0) = I e *dz +c =31

0

We see that ¢ = 3 and that the solution of the initial value problem is

t

u(t) = J e dz + 1.
0

Exercises

In Exercises 1-10, you are to solve the given differential equation. If
there is an initial condition, choose the constant of integration to satisfy

1t.

11.

12.

13,

Cdt

d
du=4,0<t;u(0)=1 2. & s
dt
du du
—_— = Q1 — 4. —_—=
i sin2t, u(0) = 0 ar cos 3t
du 1 du t
= 6 =5
dt t+1’t>0 dt 1+1¢
. JN 8 M- t>1
Tdt 1+ Tdt tt+ 1)
du t—1 du

>0 10. 2t + 3

d Pr3+2 " dt
A tank is being filled with water at a rate of q(t) liters per minute. If
the tank starts empty, find an initial value problem describing the
volume of water in the tank. (Assume that no water leaves the tank.)
Solve the initial value problem of Exercise 11 if q(t) = 8 liters per
minute. For how long is your solution valid if the tank has a capacity
of 100 liters?

Solve the initial value problem of Exercise 11 if the flow rate in liters

per minute is
t
4 — —, 0 <t =40 min
q(t) = 10

0, 40 <t
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14. Solve the initial value problem of Exercise 11 if q(t) = e ¥?°, 0 < t.

15. Find an initial value problem for the amount of salt in a 50-liter tank
if pure water enters at a rate of 5 liters per minute, solution is drawn
off at a rate of 5 liters per minute, and the tank is initially filled with
brine at a concentration of 10 grams per liter.

16. Suppose that a tank has a capacity of V liters; brine enters at a rate
of Q liters per minute and concentration k; the well-stirred contents
of the tank are drawn off at a rate of Q liters per minute; the tank is
initially filled with brine at a concentration k,. Show that an initial
value problem for the amount of salt in the tank, u(t), is

du  Q
E = Vu + Ok, 0<t,
u(O) = Vko.

17. Suppose a solid object (like a salt block) is to be dissolved in a liquid.
The rate at which the solid dissolves is —dV/dt, where V is the
volume of the solid. It is reasonable to assume that this rate depends
on the area A of the solid that is in contact with the liquid and on the
difference (¢, — ¢) between saturation concentration of the solution
and its current concentration. In mathematical terms we have said (k
is a constant of proportionality)

Z—:/ = —kA(c, — ¢).

(a) Suppose the solid is in the form of a sphere of radius R.
Rephrase the equation above as a differential equation for R. (Recall
V = $wR3, A = 47R?)

(b) Solve the equation obtained in (a), assuming that ¢, — ¢ (approx-
imately) constant. Designate R(0) = R,,.

18. Suppose now that the solid has a ‘“‘characteristic dimension” L (the
radius of a sphere or the side of a cube) and that its shape retains the
same proportions as it shrinks. Then V = vL? A = aL?, where v
and a are constants. Derive a differential equation for L and solve it.

1.2
Linear Equations

In this section and the next we will study methods for solving a very
important kind of first-order differential equation. A linear equation is
one that can be expressed as

du

i a(®u + f(1). (1.9)

The key feature is that the unknown function appears in just one place, as
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the multiplier of a given function, a(t). For the time being, we assume
that both a(t) and f(¢) are continuous over some interval o < t < 8 that
we are interested in.

A linear equation is further classified as being homogeneous if f(t) is
identically 0. The general linear homogeneous equation of first order is
thus

du

— = alt)u. 1.10
i (®) (1.10)
If f(¢) is not identically 0, the equation is nonhomogeneous, and f(t) is the
inhomogeneity. The constant function u(t) = 0 is always a solution of a
homogeneous linear equation and is never a solution of a nonhomo-
geneous one.

In Section 1.1 we derived an equation to describe the amount of salt in a
mixing tank:

d

= _0.04u + 32.

dt

This equation is linear, since the right-hand side has the form prescribed
by Eq. (1.9). We can identify a(t) = —0.04 and f(t) = 32, both constant
functions. Since f(t) is nonzero, the equation is nonhomogeneous.

A homogeneous linear first-order equation can be solved with one
integration. The thought process of someone solving

du
== a(u

runs as follows:
First divide through the equation by u to obtain
1du

0} (1.11)

Now the left-hand side is the derivative of a familiar function, In |u|. If we
integrate both sides, we get

Inlul = A() + G, (1.12)

where A(t) represents an indefinite integral of a(t). To recover u itself,
first exponentiate both sides:

lul o eA(t)+C - eA(t)eC (1.13)



