OPTIMAL

. THEORY and APPLICATIONS to
" MATERIALS and STRUCTURES

- Edited by
~ Valery V. Vasiliev
Zafer Giirdal *




QOPTIMAL
eSIGN

THEORY and APPLICATIONS to
MATERIALS and STRUCTURES

Edited by {
Valery V. Vasiliev \_ .

Corresponding Member of Russian Academy of Scien
Professor and Head of Department
Mechanics and Optimization of Processes and Structures
MATI—Russian State University of Technology

Zafer Gurdal, Ph.D.

Professor
Departments of Aerospace and Ocean Engineering and
Engineering Science and Mechanics
Virginia Polytechnic Institute and State University

BIVIRARRNRIR

E200100310

S NI
TECHNOMIC
PUBLISHING CO. INC,

[ LANCASTER - BASE]



Optimal Design
s TECHNOMIC fnub]ication

Technomic Publishing Company, Inc.
851 New Holland Avenue, Box 3535
Lancaster, Pennsylvania 17604 U.S.A.

Copyright ©1999 by Technomic Publishing Company, Inc.
All rights reserved

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

Main entry under title:
Optimal Design: Theory and Applications to Materials and Structures

A Technomic Publishing Company book
Bibliography: p.
Includes index p. 315

Library of Congress Catalog Card No. 98-88627
ISBN No. 1-56676-686-9



OPTIMAL DESIGN



HOW TO ORDER THIS BOOK

BY PHONE: 800-233-9936 or 717-291-5609, 8AmM-5PM Eastern Time
BY FAX: 717-295-4538

BY MAIL: Order Department

Technomic Publishing Company, Inc.

851 New Holland Avenue, Box 3535

Lancaster, PA 17604, U.S.A.

BY CREDIT CARD: American Express, VISA, MasterCard

BY Www SITE: http://www.techpub.com

PERMISSION TO PHOTOCOPY-POLICY STATEMENT

Authorization to photocopy items for internal or personal use, or the internal or personal use of
specific clients, is granted by Technomic Publishing Co., Inc. provided that the base fee of US
$3.00 per copy, plus US $ .25 per page is paid directly to Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, USA. For those organizations that have been granted a
photocopy license by CCC, a separate system of payment has been arranged. The fee code
for users of the Transactional Reporting Service is 1-56676/99 $5.00 + $ .25.




PREFACE

Optimal structural design can be referred to as one of the most important
and promising branches of applied mathematics and mechanics. The basic
problem of optimal design is to construct a structure that satisfies a system
of given constraints and provides the best quality and performance. Al-
though this problem is quite natural and has been known for a long time,
development of a consistent theory of optimal design has matured only re-
cently. This delay is associated with three reasons. First, the most impor-
tant applications of optimal design come from such modern fields of indus-
try as the aerospace engineering. Second, actual problems of optimal
design for complicated spatial structures can be efficiently solved only
with the aid of modern analytical and numerical methods of applied mathe-
matics and mechanics. And third, realization of optimal structures has be-
come possible only with development of sophisticated manufacturing pro-
cesses and computer-controlled machines.

Another important contribution to the theory and application of optimal
structural design is associated with the maturity of modern composite ma-
terial technology. Composite structures, as arule, can efficiently work only
having the optimal shape and material distribution corresponding to speci-
fied loading and operational conditions. Spreading use of composite mate-
rials in many fields and the need to provide maximum performance at a
least cost and material usage provides an important stimulus to the accep-
tance of the methods of optimization in structural design.

Because of possible applications that allow us to modify existing struc-
tures and develop novel structural concepts with improved performance,
optimal structural design is currently under intensive study in many coun-
tries. This book reflects the culmination of Russian activity in the field of
optimal structural design. It consists of nine chapters, eight of which repre-

ix



X Preface

sent the recent Russian achievements in the theory and application of opti-
mal structural design.

Chapter 1 is written by the editors; it presents the fields of their interest in
structural optimization and contains general formulation of the design
problem and discussions concerning the role of optimization in engineer-
ing and natural processes and presents methods of optimization that are de-
rived from the natural phenomena. Chapter 2 is devoted to the formulation
of the design problem and classical methods of structural and shape optimi-
zation. Chapter 3 contains a description of an efficient numerical method of
optimization involving simultaneous variations of design and field vari-
ables. Chapter 4 presents practical approaches and methods of optimal de-
sign for airplane frame structures. Chapter 5 is concerned with the theory of
multicriteria and multiparameter structural optimization, which is now un-
der intensive study. Chapter 6 covers a specific problem of optimal design
of laminates whose operational characteristics should be accomplished
with a finite number of layers having specified properties. A local variation
method is developed to solve this problem. Chapter 7 deals with optimal
design of weight and cost-efficient lattice composite cylindrical shells,
made by filament winding, which are currently considered for use in vari-
ous aerospace structures. Optimal winding patterns for composite shells of
revolution are studied in Chapter 8. Composite bars for space truss sys-
tems, as well as the general formulation of the design problem for compos-
ite structures, are discussed in Chapter 9.

The book chapters cover a wide class of theoretical and applied problems
of optimal structural design. The book is designed to be used by specialists
working in the fields of solid mechanics and structural design. It can also be
useful for graduate students in engineering.

V. V. VASILIEV
Z. GURDAL
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CHAPTER 1

Optimal Structural Design

1.1. INTRODUCTION

Optimal design implies determination of the values of design parameters
that control shape, materials properties, and dimensions of a structure
which must meet a set of specified constraints and improve some measure
of quality to achieve the best possible design. In general, optimal design is
a natural part of the activities of any design engineer whose challenge is to
develop a proper structure saving as many resources (material, energy, la-
bor, etc.) as possible. However, in the majority of practical cases optimal
design pursues a more specific objective with the aim of improving the op-
erational characteristics of the structure. For aerospace applications, design
for minimum weight/mass is formulated primarily to reach the best struc-
tural performance rather than to save the material. This chapter is devoted
to the discussion of some general aspects of optimal design problems.

1.2. FORMULATION OF THE DESIGN PROBLEM

Typical formulation of a design problem includes a set of constraints and
quality criteria or objective (merit) functions that should be maximized or
minimized by a proper choice of design variables. In general the design
variables directly determine the geometry and the properties of the struc-

V. V. Vasiliev, Department of Mechanics and Optimization of Processes and Structures,
Moscow State University of Aviation Technology, Moscow, Russia; Z. Giirdal, Departments
of Aerospace and Ocean Engineering, and Engineering Science and Mechanics, Virginia
Tech, Blacksburg, VA.



2 V. V. VASILIEV and Z. GURDAL

ture. However, one of the main features of many optimization problems for
load-bearing structures is that the design variables do not appear explicitly
in the set of constraints which typically describe the appropriate strength
and stiffness requirements for the structure. Instead, such constraints are
often written in terms of field variables, i.e., stresses, strains, and displace-
ments which more often than not cannot be written explicitly in terms of
the design variables (with the exception of a few simple design problems).
In order to express the constraints in terms of the design variables we need
to attack the equations of solid mechanics which, for realistic structures,
can be typically solved only with numerical methods. To overcome this
problem, two main approaches are used in optimal design of structures.
The first approach is to use the so-called structural optimality criteria meth-
ods which replace the original problem with conditions that are described
in terms of the field variables rather than the design variables. For example,
the condition of minimum mass, which is expressed in terms of materials
densities and geometric parameters of the structures, is often changed to
the condition of uniform strength which includes stresses. Structural opti-
mality criteria methods are described in detail elsewhere [1] and their im-
plementation can be found in Chapters 2, 4, 7, and 9 of this book. Optimal-
ity criteria methods are usually efficient for relatively simple structures
such as columns, beams, plates, and membrane shells for which analytical
solutions for the field variables can be obtained in terms of the design vari-
ables. As mentioned earlier, this is not the case for complicated structures
which are usually designed on the basis of the second approach which in-
volves iterative numerical mathematical optimization process. There exist
numerous iterative procedures [1] that search the optimal solution starting
from some initial set of design variables. The general feature of all such
methods is the necessity to calculate the stress-strain state of the structure
at each step of the iteration process in order to check strength and stiffness
constraints. Thus, the design problem, which is the inverse problem of me-
chanics, is reduced to a set of direct analysis problems. Despite its wide-
spread application, this approach does not seem to be natural because the
inverse problem is usually less complicated than the set of direct ones.

1.3. FORMULATION OF THE OPTIMALITY CRITERION

Consider for example the optimization problem of an isotropic homoge-
neous plate loaded with transverse pressure, p. The plate is to be designed
to have a thickness distribution which provides either the maximum stiff-
ness for a specified mass or the minimum mass for specified stiffness re-
quirements. The governing equation for a plate of variable stiffness D can
be written in the form
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where D = ER?/[12(1 — v?)]. With respect to the field variable, the deflec-
tion w, this governing equation is fourth order, while it is only second order
with respect to the design variable, the bending stiffness D or the thickness
h. So, the inverse problem of determining the thickness for specified plate
deflection is indeed simpler than the direct problem of determining the de-
flection for a specified plate thickness. However, to solve the second order
equation for a preassigned plate deflection, we need to insure that the plate
will satisfy the imposed boundary conditions and the resulting equation
will have a feasible solution, i.e., the plate thickness will not be negative.
This means that, in contrast to the condition of minimum mass (being tradi-
tionally expressed in terms of the plate thickness) which specifies what we
would like to have, the new formulation will provide the same final result
and includes the entire plate characteristic specifying the behavior of the
optimal structure. Thus, we have arrived at the central problem of the the-
ory of optimal design which we have not constructed yet—the problem of
formulation of the optimality criterion in terms of the field variables.

To illustrate the features of this formulation we will consider one more
example. A laminated plate, shown in Figure 1.1, is loaded by in-plane
forces N,, N, and N,,, which are uniformly distributed along its edges. The
laminate consists of £ monothropic layers (layers that are capable of carry-
ing loads only along the fiber direction) and has no transverse stiffness
such that the i-th layer is characterized with its thickness 4; and the fiber
orientation angle ¢;. For such layers the equilibrium equations can be writ-
ten as

(1.1)

where g; is the stress acting along the fiber direction in the i-th layer. Forces
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FIGURE 1.1. Reinforced plate in a plane stressed state.

N, N, and N, induce the plate strains ¢,, ¢, and ¢,, which are assumed to
be the same for all the layers. The plate strains can be transformed into the
layer strains sg’), sg'), and sf;) along the principal material coordinates of
the layer 1, 2 (see Figure 1.1) with the aid of the following transformation
relationships:

sfi) =¢e,cos? ; +e, sin? ¢, + ¢, sinp; cos p; (1.2)
egi) = ¢, sin? @; +.€ycos2 Qi — €&y Sing; cosp; (1.3)
eg) = (g, — &,)sin2p; + &,, cos2p, (1.4)

From the first equation, Eq. (1.2), we can write the constitutive equation for
the fibers of the i-th layer

o, = Eegi) = E(e, cos? ¢; + £y sin? ¢, + €y Sing;cosep;) (1.5)

where E is the modulus of elasticity, while Egs. (1.3) and (1.4) specify
transverse and shear strains which, in accordance with the assumed mate-
rial model, are not accompanied by stresses. Equations (1.1), (1.2), and
(1.3) readily yield the solution for the direct problem. Indeed, for a given
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set of design variables 4; and ¢;, substituting o; specified by Eq. (1.5) into
Egs. (1.1) we arrive at three equations for strains ¢,, ¢,, and ¢,,. Then the
strains of all the layers can be found using Egs. (1.2), (1.3), and (1.4); and
Eq. (1.5) gives the stresses.

Consider two formulations of the design problem for the plate with mini-
mum total thickness,

k
minh = Y h, (1.6)
i=1

According to traditional approach, we should minimize thickness, Eq.
(1.6), with stress constraints of Eq. (1.5) and constraints enforcing Egs.
(1.1). To solve this problem we use Lagrange multipliers method according
to which we should introduce multipliers A and write the following aug-
mented functional:

k
H= Y h+ AX(NX — > 0,k cos? <p,-]

i=1 i=1

k k
+ /ly(Ny - Za,h,» sin? <p,«) + lxy(ny - Ea,—h,» sin ¢; cos ¢;

i=1 i=1
k

+ 2/1,»[0,- —E(e,cos? ¢, +&,sin’ ¢, +¢&,,singp; cosp;)]
i=1

Minimization of the augmented function with respect to the design vari-
ables A; and ¢, yields

Oi(Aycos? o; + A, sin? @, + A, sing,cosp,;,) =1 (1.7)
hio[(A, — A )sin2¢; + A, cos2¢;]
= El;[(e, —&,)sin2¢; +¢€,,cos2¢,] (1.8)

Equation (1.8) has the following elementary solution:
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from which it can be concluded that the combination 4,/(k;0,) does not de-
pend on i. By substituting this solution into Eq. (1.7) we conclude that the
ratio A,/h; also does not depend on i, so that o; is constant, and the optimal
structure corresponds to the structure of uniform strength. Comparing the
result obtained with Eq. (1.5), we can further conclude that for the optimal
structure &, = ¢, and ¢,, = 0. In conjunction with Eq. (1.4) these equations
yield 812) =0, so that the fibers in all the layers coincide with the directions
of principal strains (for a more general model of material which allows for
transverse and shear stresses in the layer, the fibers are directed along the
trajectories of maximum principal stresses in the layers [2]).

Now assume that we have the formulation of the optimality criterion in
terms of the field variables. According to this formulation, all the fibers
should have the same stress and coincide with principal directions, so that

o,=0 €,=0 (i=123 ...k (1.9)

Note that these requirements are quite natural for the structure under con-
sideration and, in contrast to criterion in Eq. (1.6), are expressed in terms of
the field variables. Then, summing up the first two equilibrium Egs. (1.1)
and taking into account Eq. (1.6) we obtain the following plate total thick-
ness

=é(1vx +N,) (1.10)

Eliminating o from Eqs. (1.1), we arrive at two optimality conditions in
terms of the design variables, i.e.,

k
N h(N,sin2p, — N, cos? p,) =0
i=1

(1.11)

k
Eh,-[(Nx + N,)sing; cosp;, — N,,]=0
i=1

For laminated structures with k& layers, the three optimality conditions in
Egs. (1.10) and (1.11) include 2k design variables /; and ¢;, so for k= 1 the
optimal structure can exist only for a special combination of loads because
the set of equations is not consistent for the general loading. For k = 2 the
optimal structure is not unique and can have 2k — 3 free parameters for the
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same total thickness in Eq. (1.10). Note that this situation hinders the solu-
tion of the optimization problem based on criterion in Eq. (1.6) in conjunc-
tion with the iterative method discussed earlier because the result to be ob-
tained will depend on the initial combination of design variables from
which the iteration process starts. It should also be emphasized that the op-
timal combination of the field variables in Eq. (1.9) is the same for all vari-
ants of the optimal structure.

Thus, we can conclude that the optimality criterion formulated in terms
of the field variables is more efficient and allows us to find the solutions for
the optimization problems as inverse problems without the use of varia-
tional or iterative methods. Of course, it seems that derivation of such a cri-
terion is not simpler than solving the optimization problem itself using the
traditional methods. However, it should also be noted that the formulation
of the optimality criterion in terms of the field variables is rather universal
and, although derived for a simple problem, can be further used for more
complicated ones. Indeed, conditions in Eq. (1.9) established for uniform
statically determinate plane-stress problems can be used to find optimal
shapes of filament wound composite shells, and optimal fiber patterns in
reinforced spinning disks [2]. By now, such formulations exist only for
relatively simple structures, i.e., for truss systems, membrane elements,
and structures made of perfectly plastic material. By developing the formu-
lation further, this approach may be used to replace existing cumbersome
numerical iterative optimization methods by much more efficient analyti-
cal or numerical solutions of the inverse problems.

1.4. OPTIMAL SPACE

To proceed with the general formulation of the optimization problem,
we return to the foregoing example of bending of a plate with variable
thickness. The optimal solution for this plate has a well known solution
which is remarkable because it is not continuous. Usually, the fact that the
solution for a problem of mechanics of solids is not continuous or has sin-
gularities implies that the mathematical model of the structure is not quite
adequate. For the problem under consideration, this solution shows that the
optimal plate consists of a system of infinitely thin and infinitely high ribs.
Accounting for shear deformation, which is ignored in the classical plate
theory, or introduction of restrictions for the rib height (or the plate thick-
ness) this solution can be made to look more realistic. Nevertheless, the op-
timal structure is rather far from a homogeneous plate and can hardly be de-
scribed by equations of the plate theory.

Thus we can assume that, with respect to the formulation of the optimal-



