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PREFACE

This book will be of interest to practitioners as well as researchers in
the area of manufacturing process modeling, diagnosis and control. Over the
past few years, we, the editors, have been working on modeling and diagnosis
of semiconductor manufacturing processes. Through interaction with people
from different research areas, we have come to realize the many limitations
of commonly used approaches and that great opportunities exist to combine
these approaches and achieve Intelligent Modeling, Diagnosis, and Control of
Manufacturing Processes.

In our view, an intelligent manufacturing process control system must
have a rich model of its operating environment, be able to automatically
diagnose problems, and be able to plan for corrective actions. Based on con-
tinuous functions, classical control/statistical theories do not take advantage of
the rich body of qualitative knowledge/experience available in diagnosing and
ultimately controlling manufacturing processes. On the other hand, work-
ing primarily on the representation of qualitative experience and knowledge,
people working in Artificial Intelligence (AI) and Model-based Reasoning have
for the most part ignored integrating quantitative and qualitative knowledge.

This volume contains a collection of papers that present what we
believe are promising techniques for representing qualitative and quantitative
knowledge as well as integrating both types of knowledge in problem solving.
Papers in this volume can be roughly divided into three groups.

The first four papers represent popular AI approaches to diagnostic
reasoning. The paper by Punch, Goel, and Sticklen introduces a diagnos-
tic reasoning model based on generic tasks, a popular approach within the
Al community. The paper by Suzuki and Iwamasa demonstrates how “first
principle” knowledge can be qualitatively captured and effectively utilized
in process diagnostic applications. McDowell and Davis address the issue of
compilation of “first principles” into a more efficiently usuable form for
diagnostic reasoning. The paper by Peng and Reggia introduces their well
known causal network model for diagnostic reasoning based on formal
probability theory; they also demonstrate how distributed processing can be
used to form diagnostic hypotheses quickly.

The next two papers demonstrate the representation of quantitative
process knowledge using statistical techniques. Extending a well known statis-
tical technique, evolutionary operations, Sachs et al. present a new adaptive
control scheme that hypothesizes the structure of a process model. The paper
by Lin and Spanos provides a detailed case of building a quantitative process
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model and its subsequent application in process diagnosis and control.

The final group of four papers offers several approaches to integrate
qualitative and quantitative process knowledge and use them in diagnosis and
control. The paper by Chang and Spanos shows how a statistical model
(described by Lin and Spanos) can be utilized in diagnostic reasoning by
employing the Dempster-Shafer framework, a framework often used in the
Al community to work with qualitative knowledge. Chu describes how a con-
tinuous system model can be transformed into causal relations. The paper by
Chen presents a model of process control utilizing neural networks and fuzzy
logic. Irani, Cheng, Fayyad, and Qian present a machine learning algorithm
that learns decision trees from quantitative data; they also offer some insightful
comparisons between the classic statistical approach and the machine learning
approach.

It is our hope that this book will provide an introduction to the
representation of qualitative and quantitative process knowledge for people
who may not be familiar with these issues. In particular we hope that it will
spark further research activities in the integration of these types of knowledge
for the intelligent modeling, diagnosis and control of manufacturing processes.

B. B. C.
5SS @,
Charlotte, NC
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[CHAPTER 1

Manufacturing Diagnosis and Control:

A Task-Specific Approach*

William F. Punch III
Ashok K. Goel
Jon Sticklen'

1 Introduction and Overview

Manufacturing technology generally does not receive sufficient attention at
engineering research laboratories in the U.S. As a result, some American
manufacturing industries are beginning to lag behind that of her economic
competitors. With the growing international competition, however, is an
emerging national awareness that one of the keys to continued economic
prosperity is the ability to develop novel and better methods of manufactur-
ing.

Our research on manufacturing is based on the notion of task-specific
problem-solving or generic tasks [10, 9, 8, 7]. Our research goal is to show
the efficacy of the task-specific approach (TSA) by constructing functioning
systems for manufacturing diagnosis and control. These systems, in turn, are
expected to yield generic problem-solving architectures that would be useful
for addressing a large class of manufacturing diagnosis and control problems.
The goal of this chapter is twofold. First, to review how the task-specific

*This chapter combines and ezpands papers presented at the AAAI-90 Workshop on In-
telligent Diagnostic and Control Systems for Manufacturing and the 1990 AAAI-SIGMAN
Workshop on Planning and Conirol.

"Punch and Sticklen are with the AI/KBS Lab., Computer Science Department,
Michigan State University, East Lansing, MI 48824. They can be contacted at
punch@cps.msu.edu and sticklen@cps.msu.edu, respectively. Goel is with the AT Group,
College of Computing, Georgia Institute of Technology, Atlanta, Georgia 30332, and can
be contacted at goel@cc.gatech.edu.



approach can and has made a contribution to the domain of manufacturing,
especially in the areas of diagnosis and control. Second, to examine how
various task-specific architectures can be integrated into comprehensive sys-
tems that more fully address problem-solving in the manufacturing and other
domains.

2 Task-specific Problem-Solving

The intuition behind task-specific problem-solving is simple yet powerful:
cognition has a number of primitive types of generic tasks and problem-
solving methods. These generic tasks are encoded using control structures
and knowledge representations that are tuned to the job of each task. For
example, the problem-solving of diagnosis may require significantly differ-
ent strategies and knowledge than say design, though each may share some
aspects. This viewpoint leads to a twofold research agenda: First, examina-
tion of real-world problem-solving domains to discern new generic tasks, and
second creation of appropriate computational strategies and representations
that can encode those tasks. The promise of the task-specific approach is that
once a sufficient number of tasks are identified and their problem-solving re-
quirements understood, then more complex problem-solving methods can be
realized by combining tasks. That is, more complex problem-solving can sim-
ply emerge from an appropriate sequencing of task-specific problem-solvers.
The task-specific approach makes a number of commitments:

Cooperative Problem-Solving: The view taken of problem-solving is that of
a group of processes, each dedicated to solving specific kinds of problems,
operating in concert such that more complicated behavior emerges. Each
process has its own control and its own knowledge representation that is
specifically suited for the task it solves. This view is opposed to a number
of other Al paradigms, notably the logic and rule paradigms, which promote
a uniform low-level representation of either control or domain knowledge
in which all problem-solving activities can be encoded. The point to be
emphasized is not that such uniform architectures are incapable of solving
complex problems, but instead that they concentrate on problem-solving at
a single level (of representation, of control) which may not easily lend itself
to different kinds of problems.

Use-Specific Knowledge: The representational form of knowledge and the pro-
cess(es) that uses it cannot be separated. In general, this claim states that
knowledge might have to be represented in different forms to be utilized




in different contexts. Therefore, if knowledge representation is going to be
matched to the control structure then the representation of similar concepts
may occur in different forms. Bylander and Chandrasekaran [1987] call this
the interaction problem. In these terms, the claim is that even uniform ar-
chitecture advocates who pursue separation of knowledge and control for the
purposes of using the same knowledge in multiple problem-solving perspec-
tives implicitly take into account coding the knowledge to match the task at

hand.

A Task-specific problem-solver can be described in the following man-

ner [9]:

- The function of the problem-solver. What type of problem does it
solve, what kind of goals can it achieve? What is the nature of the
information that it takes as input, and produces as output?

- The symbolic structures and processes used to encode knowledge. What
are the primitive terms in which the forms of knowledge needed for the
task can be represented? How should knowledge be organized for that
task?

- The control strategy. What control strategy can be applied to the
knowledge to accomplish the function of the generic task?

The remaining sections of the paper will describe a view of Diagnosis
and Control problem-solving based on a task-specific approach. In particu-
lar, we will show how this approach can significantly impact the domain of
manufacturing.

3 Diagnosis

A common definition of the term diagnosts is: The mapping of signs and
symptoms to malfunctions®. As applied to the domain of manufacturing, this
means the discovery of malfunction (in equipment, in feed materials, in co-
ordinating processes etc.) that affect the quality and quantity of the product
yielded. This rough definition of the problem does not yield one particularly
approach for its resolution as there are many views on how diagnosis can be

3Caution: There are other views of what “diagnosis” means, for example, the view that
emphasizes the link between diagnosis and therapy. The sections on MDX2 (section 4.2)
and KRITIK (section 4.4) discuss this in more detail.



accomplished. For example, heuristic/empirical /compiled approaches to di-
agnosis are based on a representation which pre-enumerates the malfunction
categories and which reasons by searching for categories that best account
for the observed signs and symptoms [15, 13, 46]. Other approaches em-
phasize model-based approaches that do not pre-enumerate the categories.
Instead, these approaches determine malfunction based on representations
using detailed models of the domain and reasoning methods like design mod-
els [19], malfunction/behavior modes [16] or simulation (17, 52, 33]. Along
this spectrum from compiled to deep systems we have investigated a number
approaches to diagnosis, both in isolation and integrated into more compre-
hensive systems.

We have also investigated issues in diagnostic data validation, validation
based on a higher level of analysis than techniques which rely on strictly
statistical techniques [12, 14]. In the following sections we will describe our
work in compiled reasoning, model-based reasoning and data validation in
the context of diagnosis.

3.1 Classificatory Diagnosis

One approach to diagnosis is hierarchical classification [29]. The hierarchical
classification method finds the categories in a classification hierarchy that
apply to the situation being analyzed. A significant portion of expert systems
such as MYCIN [46] can be viewed as classification. In fact, Clancey [15]
has specifically analyzed MYCIN and shown it to be a kind of classification
problem-solving.

Diagnosis as a classification problem-solving task is a matching of the data
of the problem against a set of malfunctions (i.e diseases, system failures etc).
If the present data is classified as a known malfunction, then the diagnosis is
completed. Note that this is a compiled/associational approach to diagnosis
as it requires that the possible malfunctions of the particular domain be pre-
enumerated. For example, given some data about a car engine problem, the
hierarchical classification task is to find the categories (e.g. broken piston,
faulty distributor) that best describe the data of the problem. The task-
specific characteristics of hierarchical classification are as follows.

The classifier requires a pre-enumerated list of the categories. These cat-
egories must be organized into a hierarchy in which the children (i.e the
subnodes) of a node represent subhypotheses of the parent (i.e the superior
node). Figure 1 illustrates a fragment of a tree from a hierarchical classi-
fication system for the diagnosis of malfunctions in a Chemical Processing
Plant.



Cooling

Compressor

System
Flow Control
Gt AirFeed Mechanical
Reactor System Flow Control

Electrical
Pressure

Control Flow Control

System

Settings

Figure 1: Fragment of Chemical Processing Plant classification tree



Note that as the hierarchy is traversed from the top down, the cate-
gories, or in this particular case hypotheses about the failure of the Chemical
Plant, become more specific. Thus the children of the hypothesis AirFeed
Problems can be broken into more specific hypotheses of Compressor
Malfunction and various kinds of Flow Control Malfunctions.

Each node in the hierarchy is responsible for calculating the "degree of
fit” or confidence value of the hypotheses that the node represents. For
example, the node AirFeed Problems node is responsible for determining
if there is an air feed malfunction and the dégree of confidence it has in
that decision. Each node can be thought of as an expert in determining if
the hypothesis it represents is present. To create each node, pattern-match
knowledge must be provided to make this confidence value decision. The
general idea is that each node requires a list of features that are important
in determining whether the hypothesis it represents is present and a list
of patterns that map combinations of features to confidence values. In the
AirFeed Problems node, such features might include poor product color,
decreased reactivity, settling of product etc. One pattern might be that if all
three of those features are present, then the AirFeed Problems hypothesis
is likely.

Given that the knowledge of the system is organized as a set of pattern-
match nodes in a hierarchy, how can the hierarchy be efficiently traversed?
This process is primarily accomplished through a type of hypothesis refine-
ment called establish-refine. Simply put, a node that establishes its hypoth-
esis (has a high confidence value) refines itself by trying to establish its more
detailed sub-nodes. A node that rules out or rejects its hypothesis (has a low
confidence value) does not send any messages to its sub-nodes, thus ignoring
that entire part of the hierarchy. This pruning process can occur because of
the hierarchy’s organization of nodes based on hypothesis-subhypothesis. For
example, the subhypotheses of AirFeed Problems are simply more detailed
hypotheses. If there is no evidence for AirFeed Problems (i.e., it is ruled
out), then there is no point in examining more detailed hypothesis about
failures of that subsystem.

The above strategy of hierarchical classification has been formally char-
acterized and analyzed in [28, 11]. The analysis of hierarchical classification
reaffirms the computational advantages of hierarchical organization of classi-
ficatory knowledge. While the general task of classification is computation-
ally intractable, if and when classificatory knowledge can be organized in a
hierarchy, the task can be solved tractably.

The strategy of hierarchical classification is embodied in a domain-
independent tool called CSRL [6] that allows domain experts, who need not



be Al specialists, to program diagnostic systems. CSRL has been used in
a number of manufacturing domains including diagnosis of chemical pro-
cesses [47] and nuclear power plants [30]. It has also been used in other do-
mains including internal medicine [49, 51, 43] and international politics [55].

3.2 Abductive Diagnosis

A second approach to diagnosis is that of abduction. Abduction as a diag-
nostic process was first applied by Pople in the INTERNIST system [40],
followed by the set-covering model of Reggia [44]. We have been involved in
work on a method known as abductive assembly [48, 39] first applied in the
RED red blood cell analyzer*. This work has been extended in a number of
ways including approaches to distributed abduction [51], concurrent abduc-
tion [27] and development of the domain-independent abductive assembly
tool PEIRCE [37].

The process of abductive assembly is driven by the need to explain a set
of data. In the context of diagnosis, abductive assembly is a method for
explaining a set of symptoms or findings in terms of malfunction hypotheses
present in the domain. We use the term “hypothesis” to refer to an object
that might explain some of the findings constituting the abductive problem.
So we say that a hypothesis “offers to explain” some finding or set of findings,
such as “AirFeed Problems Hypothesis offers to explain the color change
noticed in the product”. An abductive system collects a set of hypothesis that
together explain as many of the current findings under the mutual constraints
imposed by the other hypotheses as possible. This set of hypotheses is called
a compound hypothesis or compound explanation. Thus abductive assembly is
a method for assembling explanatory hypotheses to explain domain findings
under some constraints.

Given the goal of trying to explain the findings, we find that there are
three general subgoals for achieving abductive assembly [37]:

1. Obtain a candidate set of hypotheses for possible inclusion in the com-
pound explanation.

2. Explain the findings by constructing a compound explanation.

3. Critique the compound explanation.

4RED was not itself a diagnostic system, but it’s approach has since been applied to a
number of diagnostic domains [49].



Obtaining the candidate set of hypotheses for use by the abductive assem-
bler can be done in a number of ways. In the original RED system [39, 48],
a hierarchical classifier was used to reduce the list of potential hypotheses
by using only those malfunction hypotheses it deemed plausible. That is, if
a node is ruled-out then that hypotheses is not provided to the abductive
assembler. This “heuristic filtering” greatly reduces the complexity of the
assembly process and focuses its efforts in areas that appear plausible from
another viewpoint. Besides plausibility information, other information must
be provided to the abductive assembler via the. hypotheses. This includes:

- Knowledge about what findings can be explained by this hypothesis
and, if such knowledge is available, to what degree. This information
can be generated based on the state of the problem being solved or
pre-compiled.

- Knowledge about what other hypotheses this hypothesis might conflict
with, again either generated or pre-compiled. For example, the hy-
pothesis of Hot Reactor cannot simultaneously exist in the compound
explanation with the hypothesis Cold Reactor as they are mutually
incompatible.

- Knowledge about what other hypotheses are entailed or suggested by
this hypothesis. For example, in a closed vessel the hypothesis Raised
Pressure might entail that Raised Temperature also be used.

The details of explaining the findings using the assembly process are
shown in Figure 2. Once hierarchical classification has generated the list
of malfunction hypotheses, the abductor begins assembling an explanation.
First, a finding is selected to be explained. From the hypothesis list, a set of
hypotheses that offers to explain that finding are formed as the candidates for
assembly. From this candidate list, a hypothesis is selected for inclusion into
the final explanation set. The selection is based on each candidate member’s
plausibility, its compatibility with other members of the final explanation and
other factors. The selected hypothesis is integrated into the final explanation
and the selected finding is marked as explained, as well as any other findings
that the hypothesis can explain. The process of selecting a finding, select-
ing an explanatory hypothesis, integrating the selected hypothesis into the
final explanation and updating of the findings continues until either all the
findings are explained or some condition prevents a complete explanation.

Since we engage in abductive problem-solving to find out what is true or
believable about a situation, we want to know if the explanatory hypothesis



