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Preface

Many books already exist on the topics of digital control and estimation. The
prospective reader of this book might well then ask, “why another book in this
area?”’

One problem with the existing literature is that it emphasizes the differences
between discrete and continuous theory. This dichotomy is largely historical in
nature and may not be the best approach from a pedagogical viewpoint. For
example, shift operators and Z-transforms, which form the basis of most discrete
time analyses, are inappropriate when used with fast sampling and have no
continuous time counterpart. Our philosophy, as presented in this book, is that the
continuous and discrete cases can, and should, be understood under a common
framework. We show that this is facilitated if the shift operator is augmented with
alternative forms including one which we call the delta operator. Using the latter
operator, it becomes evident that all discrete time theory converges smoothly to the
appropriate continuous results as the sampling rate increases. An additional, and
somewhat unexpected, bonus arising from the use of the alternative operators is that
numerical properties can be substantially improved relative to the more traditional
shift operator.

Thus, this book presents continuous and discrete control and estimation
theory in a unified fashion, highlighting the interrelationships between the two
cases. Our firm belief is that this unified view of discrete and continuous theory is
much richer and more informative than when either of the two are studied in
isolation.

XV



Another thrust of the book is to unify practical considerations with theoretical
analysis. This is achieved by discussing implementation issues in detail and by
presenting an industrial case study.

The book has a dual audience. Part of the book would be suitable for a first
undergraduate course in digital control. The remainder would form the basis of one
or more graduate courses in advanced control and estimation.

The prerequisite for the “undergraduate” portion of the text is an elementary
mathematical background in Linear Algebra, Differential Equations, Calculus and
Complex Numbers. The more advanced material depends upon additional back-
ground normally available to graduate students.

The authors would like to acknowledge those who assisted with the prepara-
tion of this book. First, the book would not have been possible without the support
and understanding of our wives Ruth (Middleton) and Rosslyn (Goodwin). The
book has also been used in both undergraduate and graduate courses at the
University of Newcastle, Australia, and we would like to thank the students in these
courses for their advice as the book took shape. A detailed solutions manual was
prepared by Changyun Wen and Youyi Wang. Very helpful feedback was also
obtained from Robert Bitmead, Robin Evans, Arie Feuer, Art Harvey, Peter Hippe,
Konrad Hitz, Michel Kinnaert, Bengt Lennartson, Mario Salgado and Bjorn
Wittenmark. The authors are also grateful for very helpful suggestions made by
several anonymous reviewers.

The manuscript was expertly typed by Ildiko de Souza and the diagrams were
prepared by Wanda Lis and Vilma Lucky.

Rick Middleton
Graham Goodwin
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Introduction

This book presents a fresh approach to the topics of digital control and estimation.
A central theme is to unify continuous and discrete theory. Our belief is that it is
instructive to view continuous time results as a suitable limiting case of the
corresponding discrete results. This represents a divergence from previous presenta-
tions of discrete theory, which tended to highlight the differences between the two
cases.

Typically, the topics of digital control and estimation are described in a
different framework than that used for continuous time systems. As an example of
the divergence between the approaches, consider the problem of stability. In the
usual continuous time theory, we say that a linear system is stable if its poles lie in
the left half-plane. However, in the traditional discrete time theory, we say that a
linear system is stable if its poles lie inside the unit circle. It is difficult to see the
connection between these results. We argue in this book that the apparent schism
that has arisen between analog and digital theory can be traced to the widespread
use of shift operators and Z-transforms in the discrete case. In this book, we
introduce an additional operator, which we call the delta operator. This operator
offers the same flexibility as does the shift operator in the description of discrete
systems yet has several advantages over the latter, including:

o It highlights the similarities, rather than the differences, between discrete and
continuous systems, thus allowing continuous insights to be applied to the discrete
case.

« It introduces the sampling period as an exhibit parameter, thus allowing the effect
of different choices for this parameter to be readily assessed.

e It allows a unified systems theory to be developed without needing to run a
separate line of development for continuous and discrete.



» It allows most continuous time results to be obtained as a simple special case of
the discrete results (by setting the sampling period to zero).

» It offers substantial numerical advantages in most cases of practical interest.

A brief outline of the content of the book is as follows. We begin in Chapter 2
by giving a brief overview of how simple models of physical systems can be derived
from the laws of nature. This modeling typically involves the use of state space
ideas. The important question of linearization of nonlinear models is also discussed
in some detail, including such techniques as input—output transformations, feedback
compensation, and linear approximation.

Chapter 3 describes the sampling process, including choice of sampling rate,
and aliasing. We also show how models for sampled data systems can be derived
from an underlying continuous time representation. The notion of the shift operator
is introduced, and this is then extended to more general representations, including
the delta operator. We also briefly discuss numerical issues leading to the conclusion
that the delta operator has significant advantages over the shift form.

One of the most useful tools to have evolved for the analysis of linear
estimation and control systems is that of transform techniques. The traditional
techniques of Laplace and Z-transforms are discussed in Chapter 4. This is followed
by the development of a unified transform theory, which allows both continuous
and discrete systems to be treated simultaneously.

This leads us, in Chapter 5, to the topic of transfer function analysis.
Particular emphasis is given to the notions of poles and zeros and their relationships
for discrete and continuous systems. A distinctive feature of the chapter is the
insightful discussion of the zeros that arise when a continuous time system is
sampled.

Chapter 6 builds on the notion of transfer functions and introduces the
important concept of system frequency response. We examine the interrelationship
of continuous and discrete frequency responses. We also study systems having pure
time delays.

Chapter 7 explores the analysis of control system performance using classical
(that is, frequency domain) techniques. The discussion includes elementary notions
of stability, the motivation for the use of feedback, as well as performance
specifications in both the time and frequency domain for control systems.

In Chapter 8, we extend the methods of systems analysis to time domain
techniques based on state space representations and matrix fraction descriptions.
The notions of controllability, observability, minimal realizations, per unit values,
canonical forms, and balanced realizations of systems are discussed.

This leads naturally to the discussion of state observers and state variable
feedback in Chapter 9. We examine the interrelationship with frequency domain
control systems analysis. We also introduce the ideas of fractional representations
and their use in control systems analysis.

Chapter 10 discusses optimal state estimation. The Kalman filter is derived
and its properties analyzed. Also, the class of all stable unbiased state estimators is
described and used to motivate various robustness issues.

2 Introduction Chap. 1



