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FOREWORD

Until recently B-spline curves and surfaces (NURBS) were principally of interest to the
computer aided design community, where they have become the standard for curve and
surface description. Today we are seeing expanded use of NURBS in modeling objects
for the visual arts, including the film and entertainment industries, art, and sculpture.
NURBS are now also being used for modeling scenes for virtual reality applications.
These applications are expected to increase. Consequently, it is quite appropriate for
The NURBS Book to be part of the Monographs in Visual Communication Series.

B-spline curves and surfaces have been an enduring element throughout my pro-
fessional life. The first edition of Mathematical Elements for Computer Graphics,
published in 1972, was the first computer aided design/interactive computer graph-
ics textbook to contain material on B-splines. That material was obtained through the
good graces of Bill Gordon and Louie Knapp while they were at Syracuse University.
A paper of mine, presented during the Summer of 1977 at a Society of Naval Architects
and Marine Engineers meeting on computer aided ship surface design, was arguably
the first to examine the use of B-spline curves for ship design.

For many, B-splines, rational B-splines, and NURBS have been a bit mysterious.
Consequently, for the last several years a thorough, detailed, clearly written, and easily
understood book on B-splines and rational B-splines has been needed. Thus, it was with
considerable anticipation that I awaited Les Piegl and Wayne Tiller’s book. I was not
disappointed: They have elegantly and fully satisfied that need with The NURBS Book.
In developing the material for the book, they draw from their considerable academic
and industrial experience with NURBS to present this rather complex subject in a
straightforward manner: Their presentation style is clear and detailed. The necessary
mathematics is presented with considerable attention to detail and more than adequate
rigor. The algorithms (many of which are in C-like pseudocode) are well thought out
and meticulously prepared. In the interests of accuracy, each and every illustration in
the book was computer generated — a monumental task. They have created a book of
lasting value.

B-spline curves and surfaces grew out of the pioneering work of Pierre Bézier in the
early 1970s. Perhaps one can consider B-spline curves and surfaces the children of
Bézier curves and surfaces, and nonuniform rational B-splines, or NURBS, the grand-
children. The timing is about right; they have certainly come of age.

Finally, it is only appropriate to acknowledge my pleasure in working with both Les
Piegl and Wayne Tiller to bring this project to fruition.

David F. Rogers
Series Editor
Monographs in Visual Communication



PREFACE

Non-Uniform Rational B-Splines, commonly referred to as NURBS, have become
the de facto industry standard for the representation, design, and data exchange of
geometric information processed by computers. Many national and international stan-
dards, e.g., IGES, STEP, and PHIGS, recognize NURBS as powerful tools for geometric
design. The enormous success behind NURBS is largely due to the fact that

« NURBS provide a unified mathematical basis for representing both analytic
shapes, such as conic sections and quadric surfaces, as well as free-form entities,
such as car bodies and ship hulls;

o designing with NURBS is intuitive; almost every tool and algorithm has an
easy-to-understand geometric interpretation;

« NURBS algorithms are fast and numerically stable;

o NURBS curves and surfaces are invariant under common geometric transforma-
tions, such as translation, rotation, parallel and perspective projections;

« NURBS are generalizations of nonrational B-splines and rational and nonra-
tional Bézier curves and surfaces.

The excellent mathematical and algorithmic properties, combined with successful in-
dustrial applications, have contributed to the enormous popularity of NURBS. NURBS
play a role in the CAD/CAM/CAE world similar to that of the English language in
science and business: “Want to talk business? Learn to talk NURBS”.

The purpose of this book is basically twofold: to fill a large gap in the literature that
has existed since the early seventies, and to provide a comprehensive reference on all
aspects of NURBS. The literature on NURBS is sparse and scattered, and the available
papers deal mainly with the mathematics of splines, which is fairly complex and requires
a detailed understanding of spline theory. This book is aimed at the average engineer
who has a solid background in elementary college mathematics and computing. No
doctoral degree is required to understand the concepts and to implement the literally
hundreds of algorithms that are introduced.

During the four years of writing this book, we have

« surveyed the available literature and presented important results;

« continued our research on NURBS and included the latest developments; in fact,
about half of the book contains new material developed in the last few years:

o developed a comprehensive NURBS library, called Nlib V1.0, V2.0. This li-
brary is the result of over 20 man-years of experience in NURBS research and
development, and it combines new and well-tried software practices applied in
previous systems that we designed;



x Preface

« tested every single formula and algorithm, and presented graphical illustrations
precisely computed using the routines of Nlib. This book does not contain
any hand-drawn figures; each figure is precisely computed and hence
is accurate.

We are pleased to present all of the accomplishments to the reader: (1) the book as
a comprehensive reference, (2) Nlib source code (to order please see page 639 of this
volume), and (3) the illustrations to instructors who adopt the book to teach a course on
NURBS. In order for the reader to appreciate the enormous amount of work that went
into this reference book, we present some data. To generate the graphical illustrations
and to build Nlib, we wrote exactly (not counting the hundreds of test programs)

e 1,524 programs, that required
» 15,001,600 bytes of storage, which is roughly equivalent to
« 350,000 lines of code.

It was no picnic!

Some years ago a few researchers joked about NURBS, saying that the acronym really
stands for Nobody Understands Rational B-Splines. We admit that our colleagues
were right. In the last four years, we were largely influenced by this interpretation
and tried to present the material in the book in an intuitive manner. We hope that
this helps change the acronym NURBS to EURBS, that is, Everybody Understands
Rational B-Splines. We welcome the reader’s opinion on our job and suggestions on
possible improvements.

It is our pleasure to acknowledge the help and support of many people and organi-
zations. First and foremost, we are grateful to our spouses, Karen Piegl and LaVella
Tiller, for their patience, support, and love. We owe special thanks to N ancy Rogers of
NAR Associates for the beautiful typesetting job, and David Rogers for the editorial
and technical discussions that led to many improvements in the manuscript. We also
thank Jim Oliver and Tim Strotman for the many suggestions and technical corre-
spondence that helped shape this book into its current form. Tiller also thanks the
many past and present colleagues in industry who over the years contributed inspiring
discussions, valuable insights, support, and collegial companionship: They know who
they are. Piegl’s research was supported in part by the National Science Foundation
under grant CCR-9217768 awarded to the University of South Florida. and by various
grants from the Florida High Technology and Industry Council.

March 1995 Les Piegl
Wayne Tiller

It is less than a year since the first printing of The NURBS Book. Due to its popularity,
Springer-Verlag decided to publish a soft cover edition of the book. Apart from being
significantly more affordable, the second printing corrects a number of errors; redesigns
Algorithm A3.5 to eliminate the use of a local array; and fixes minor bugs in the
knot insertion algorithms, A5.1 and A5.3. as well the degree elevation algorithm, A5.9.
Apart from these corrections, this printing is identical to the first printing.

July 1996 Les Piegl
Wayne Tiller
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CHAPTER
ONE

Curve and Surface Basics

1.1 Implicit and Parametric Forms

The two most common methods of representing curves and surfaces in geometric
modeling are implicit equations and parametric functions.

The implicit equation of a curve lying in the zy plane has the form f(z,y) = 0.
This equation describes an implicit relationship between the z and y coordinates
of the points lying on the curve. For a given curve the equation is unique up to
a multiplicative constant. An example is the circle of unit radius centered at the
origin, specified by the equation f(z,y) = 2% + y? — 1 = 0 (Figure 1.1).

In parametric form, each of the coordinates of a point on the curve is repre-
sented separately as an explicit function of an independent parameter

C(u) = (z(u),y(u)) a<u<b

Thus, C(u) is a vector-valued function of the independent variable, u. Although
the interval [a, b] is arbitrary, it is usually normalized to [0, 1]. The first quadrant
of the circle shown in Figure 1.1 is defined by the parametric functions

z(u) = cos(u)

y(u) =sin(u) 0<u< g (1.1)
Setting ¢ = tan(%/2), one can derive the alternate representation
1-—1¢?
ok,
o) =13
2t
)= — 0<t<1 1.
vt = 10 <t< (1.2)

Thus, the parametric representation of a curve is not unique.
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e

Radius =1

Figure 1.1. A circle of radius 1, centered at the origin.

It is instructive to think of C(u) = (z(u),y(u)) as the path traced out by a
particle as a function of time; u is the time variable, and [a, b] is the time inter-
val. The first and second derivatives of C(u) are the velocity and acceleration
of the particle, respectively. Differentiating Eqgs. (1.1) and (1.2) once yields the
velocity functions

C'(u) = (z'(u),y'(u)) = ( —sin(u), cos(u))

CO = 0w0) - (grrm )

Notice that the magnitude of the velocity vector, C’(u), is a constant

|C' ()] = y/sin?(u) + cos(u) = 1
i.e., the direction of the particle is changing with time, but its speed is constant.
This is referred to as a uniform parameterization. Substituting ¢t =0 and t = 1
into C'(t) yields C’(0) = (0,2) and C'(1) = (—1,0), i.e., the particle’s starting
speed is twice its ending speed (Figure 1.2).

A surface is defined by an implicit equation of the form f(z,y,2) =0. An ex-
ample is the sphere of unit radius centered at the origin, shown in Figure 1.3 and
specified by the equation z? +y? + 22 — 1 = 0. A parametric representation (not
unique) of the same sphere is given by S(u,v) = (z(u,v), y(u,v), 2(u,v)), where

z(u,v) = sin(u) cos(v)
y(u,v) = sin(u) sin(v)

z(u,v) = cos(u) 0<u<m 0<wv<2r (1.3)
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g C'(t=0)
Cu=1)=C'(t=1)
C'(u=0)
= T

Figure 1.2. Velocity vectors C’(u) and C'(t) at u,t =0, and 1.

Notice that two parameters are required to define a surface. Holding u fixed
and varying v generates the latitudinal lines of the sphere; holding v fixed and
varying u generates the longitudinal lines.

Radius =1

Figure 1.3. A sphere of radius 1, centered at the origin.



4 Curve and Surface Basics

Denote the partial derivatives of S(u,v) by Su(u,v) = (zu(u,v),yu(u,v),
zu(u,v)) and Sy(u,v) = (zo(u,v),yu(u,v), 2o(u,v)), ie., the velocities along
latitudinal and longitudinal lines. At any point on the surface where the vector
cross product S, x S, does not vanish, the unit normal vector, N, is given by
(Figure 1.4)

N — S. xS,

=t - 4. 1.4
[Su X Sy (14)

The existence of a normal vector at a point, and the corresponding tangent
plane, is a geometric property of the surface independent of the parameterization.
Different parameterizations give different partial derivatives, but Eq. (1.4) always
yields N provided the denominator does not vanish. From Eq. (1.3) it can be
seen that for all v, 0 < v < 27, S,(0,v) = S,(m,v) = 0, that is, S, vanishes
at the north and south poles of the sphere. Clearly, normal vectors do exist
at the two poles, but under this parameterization Eq. (1.4) cannot be used to
compute them.

Of the implicit and parametric forms, it is difficult to maintain that one is
always more appropriate than the other. Both have their advantages and dis-
advantages. Successful geometric modeling is done using both techniques. A
comparison of the two methods follows:

Su

Figure 1.4. Partial derivative and unit normal vectors of S(u, v).
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By adding a z coordinate, the parametric method is easily extended to repre-
sent arbitrary curves in three-dimensional space, C(u) = (z(u), y(u), 2(u));
the implicit form only specifies curves in the zy (or zz or yz) plane;

It is cumbersome to represent bounded curve segments (or surface patches)
with the implicit form. However, boundedness is built into the parametric
form through the bounds on the parameter interval. On the other hand,
unbounded geometry (e.g., a simple straight line given by f(z,y) = ax +
by + ¢ = 0) is difficult to implement using parametric geometry;

Parametric curves possess a natural direction of traversal (from C(a) to
C(b) if a < u < b); implicit curves do not. Hence, it is easy to generate
ordered sequences of points along a parametric curve. A similar statement
holds for generating meshes of points on surfaces;

The parametric form is more natural for designing and representing shape in
a computer. The coefficients of many parametric functions, e.g., Bézier and
B-spline, possess considerable geometric significance. This translates into
intuitive design methods and numerically stable algorithms with a distinctly
geometric flavor;

The complexity of many geometric operations and manipulations depends
greatly on the method of representation. Two classic examples are:

— compute a point on a curve or surface — difficult in the implicit form;
— given a point, determine if it is on the curve or surface — difficult in
the parametric form;

« In the parametric form, one must sometimes deal with parametric anoma-
lies which are unrelated to true geometry. An example of this is the unit
sphere (see Eq.[1.3]). The poles are parametric critical points which are
algorithmically difficult, but geometrically the poles are no different than
any other point on the sphere.

We are concerned almost exclusively with parametric forms in the remainder

of this book. More details on implicit and parameteric forms can be found in
standard texts ([Faux81; Mort85; Hoff89; Beach]).

1.2 Power Basis Form of a Curve

Clearly, by allowing the coordinate functions z(u), y(u), and z(u) to be arbi-
trary, we obtain a great variety of curves. However, there are trade-offs when
implementing a geometric modeling system. The ideal situation is to restrict
ourselves to a class of functions which

«» are capable of precisely representing all the curves the users of the sys-
tem need;

« are easily, efficiently, and accurately processed in a computer, in particu-
lar:

— the computation of points and derivatives on the curves is efficient;
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— numerical processing of the functions is relatively insensitive to float-
ing point round-off error;

— the functions require little memory for storage;

« are simple and mathematically well understood.

A widely used class of functions is the polynomials. Although they satisfy
the last two criteria in this list, there are a number of important curve (and
surface) types which cannot be precisely represented using polynomials; these
curves must be approximated in systems using polynomials. In this section and
the next, we study two common methods of expressing polynomial functions,
power basis and Bézier. Although mathematically equivalent, we will see that
the Bézier method is far better suited to representing and manipulating shape
in a computer.

An nth-degree power basis curve is given by

C(u) = (z(u),y(u), 2(uv)) = Zaiui 0<u<l1 (1.5)
i=0
The a; = (z;,yi, ;) are vectors, hence

n

z(u) = Zwlu’ y(u) = Zy,u’ z(u) = Z ziut
i=0 i=0

=0

In matrix form Eq. (1.5) is

S M=

Clw)=la0 a1 - an]| . | =[ai]"[v] (1.6)

un

(We write a row vector as the transpose of a column vector.)
Differentiating Eq. (1.5) yields

. C(i)(u)|u=0

3!

where C® (u)|,—¢ is the ith derivative of C(u) at v = 0. The n + 1 functions,
{u'}, are called the basis (or blending) functions, and the {a;} the coefficients
of the power basis representation.

Given ug, the point C(ug) on a power basis curve is most efficiently computed
using Horner’s method

a;

o for degree =1 : C(ug) = ajug + ag
. degree = 2 : C(ug) = (agup + a1) up + ag

«  degree =n: C(ug) = ((--- (anto + an—1) ug + ap_2) ug + - + ag



